摘要
设B^H,K={B^H,K(t),t≥0}是取值于Rd中Hurst指数为H∈(0,1)和K∈(0,1]的双分数布朗运动.它是分数布朗运动的一个推广.该文考虑了B^H,K重整化自相交局部时的光滑性问题.主要运用Malliavin分析中混沌展开的方法,在Meyer-Watanabe意义下,得到了B^H,K重整化自相交局部时是光滑的.该文结论推广了分数布朗运动的相关结果.
Let B^H,K={B^H,K(t),t≥0}be a bifractional Brownian motion in Rd with Hurst indexes H∈(0,1)and K∈(0,1].This process constitutes a natural generalization of fractional Brownian motion(which is obtained for K=1).In this paper,we research the smoothness of the renormalized self-intersection local time of B^H,K.By the chaos expansion method of Malliavin analysis,we obtain the smoothness of the renormalized self-intersection local time of B^H,K in the sense of Meyer-Watanabe.And our result generalizes that of fractional Brownian motion.
作者
桑利恒
陈振龙
郝晓珍
Sang Liheng;Chen Zhenlong;Hao Xiaozhen(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018;School of Mathematics and Finance,Chuzhou University,Anhui Chuzhou 239000)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2020年第3期796-810,共15页
Acta Mathematica Scientia
基金
国家自然科学基金(11971432)
教育部人文社会科学研究规划基金(18YJA910001)
浙江省教育厅科研基金(Y201942401)
浙江省一流学科A类(浙江工商大学统计学)。
关键词
双分数布朗运动
重整化自相交局部时
混沌展开
光滑性
Bifractional Brownian motion
Renormalized self-intersection local time
Chaos expansion
Smoothness