期刊文献+

双分数布朗运动重整化自相交局部时的光滑性

Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion
下载PDF
导出
摘要 设B^H,K={B^H,K(t),t≥0}是取值于Rd中Hurst指数为H∈(0,1)和K∈(0,1]的双分数布朗运动.它是分数布朗运动的一个推广.该文考虑了B^H,K重整化自相交局部时的光滑性问题.主要运用Malliavin分析中混沌展开的方法,在Meyer-Watanabe意义下,得到了B^H,K重整化自相交局部时是光滑的.该文结论推广了分数布朗运动的相关结果. Let B^H,K={B^H,K(t),t≥0}be a bifractional Brownian motion in Rd with Hurst indexes H∈(0,1)and K∈(0,1].This process constitutes a natural generalization of fractional Brownian motion(which is obtained for K=1).In this paper,we research the smoothness of the renormalized self-intersection local time of B^H,K.By the chaos expansion method of Malliavin analysis,we obtain the smoothness of the renormalized self-intersection local time of B^H,K in the sense of Meyer-Watanabe.And our result generalizes that of fractional Brownian motion.
作者 桑利恒 陈振龙 郝晓珍 Sang Liheng;Chen Zhenlong;Hao Xiaozhen(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018;School of Mathematics and Finance,Chuzhou University,Anhui Chuzhou 239000)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2020年第3期796-810,共15页 Acta Mathematica Scientia
基金 国家自然科学基金(11971432) 教育部人文社会科学研究规划基金(18YJA910001) 浙江省教育厅科研基金(Y201942401) 浙江省一流学科A类(浙江工商大学统计学)。
关键词 双分数布朗运动 重整化自相交局部时 混沌展开 光滑性 Bifractional Brownian motion Renormalized self-intersection local time Chaos expansion Smoothness
  • 相关文献

参考文献4

二级参考文献29

  • 1JIANG YiMing,WANG YongJin.Self-intersection local times and collision local times of bifractional Brownian motions[J].Science China Mathematics,2009,52(9):1905-1919. 被引量:12
  • 2Yiming JIANG,Yongjin WANG.On the Collision Local Time of Fractional Brownian Motions[J].Chinese Annals of Mathematics,Series B,2007,28(3):311-320. 被引量:11
  • 3Es-Sebaiy K,Tudor C A.Multidimensional bifractional Brownian motion: Itfio and Tanaka formulas. Stoch Dyn . 2007
  • 4Houdrè C,Villa J.An example of infinite dimensional quasi-helix. Stoch Models . 2003
  • 5Lei P,Nualart D.A decomposition of the bifractional Brownian motion and some applications. Statistics and Probability Letters . 2009
  • 6Shieh N R,Xiao Y.Images of Gaussian random fields: Salem sets and interior points. Studia Mathematica . 2006
  • 7Tudor C A,Xiao Y.Sample path properties of bifractional Brownian motion. Bernoulli . 2007
  • 8Xiao Y.Strong local nondeterminism of Gaussian random fields and its applications. Asymptotic Theory in Probability and Statistics with Applications . 2007
  • 9M. Talagrand.Hausdorff measure of trajectories of multiparameter fractional Brownian motion. The Annals of Probability . 1995
  • 10Falconer KJ.Fractal Geometry: Mathematical Foundation and Application. . 1990

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部