期刊文献+

5G通信中基于混合波束成型的多用户MIMO调度算法研究 被引量:5

Research on multi-user MIMO scheduling algorithms based on hybrid beam forming in 5G communication
下载PDF
导出
摘要 大规模多输入多输出(MIMO)技术是5G通信的核心技术之一,信号多入多出可以有效提高通信传输中的频谱效率与用户的通信质量。本文从用户下行信道与通信向量函数2个维度阐述了信道有效传输原理,并基于此设计了一种毫米波MIMO混合波束成型模型。文章分析了毫米波混合波束成型模型设计原理、实现步骤及算法复杂度情况,并利用混合波束成型模型设计了多用户MIMO调度的具体实现方法;基于模型确定出双向交替优化MIMO系统的发射端和接收端子阵列的天线加权矢量,给出数字模拟混合波束成型的算法方案,最终实现多用户MIMO的均衡调度。仿真结果表明,所提出的调度算法具有收敛速度快、计算复杂度低、基带传输效率高等优势。 Massive multi-input and multi-output(MIMO)is one of the core technologies of 5G communication.MIMO signals can effectively improve the spectrum efficiency in communication transmission and the communication quality of users.The effective transmission principle of channel is described from two dimensions of user downlink channel and communication vector function,and a hybrid beam forming model of millimeter wave MIMO is designed based on this.The design principle,implementation steps and algorithm complexity of MMW hybrid beam forming model are analyzed.Based on the model,the weighted vector of bi-directional alternately optimized transmitter and receiver arrays is determined,and the algorithm flow of digital simulation hybrid beam forming is given,and finally the balanced scheduling of multi-user MIMO is realized.Simulation results show that the proposed scheduling algorithm has the advantages of fast convergence,low computational complexity and high baseband transmission efficiency.
作者 徐顺清 石晶林 张宗帅 龙隆 任俊威 Xu Shunqing;Shi Jinglin;Zhang Zongshua;Long long;Ren Junwei(Beijing Key Laboratory of Mobile Computing and Pervasive Device,Beijing 100190;Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;Samsung Research Institute China-Beijing(SRC-B),Beijing 100028)
出处 《高技术通讯》 EI CAS 北大核心 2020年第6期545-552,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61571425) 北京市自然科学基金(L172049)资助项目。
关键词 5G通信 混合波束 多用户 大规模多输入输出(MIMO) 调度算法 5G communication mixed beam multi-user massive multi-input and multi-output(MIMO) scheduling algorithm
  • 相关文献

参考文献12

二级参考文献86

共引文献86

同被引文献50

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部