期刊文献+

Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction 被引量:1

下载PDF
导出
摘要 Converting carbon dioxide(CO2)into value-added chemicals by CO2 reduction has been considered as a potential way to solve the current energy crisis and environmental problem.Among the methods of CO2 reduction,the electrochemical method has been widely used due to its mild reaction condition and high reaction efficiency.In the electrochemical reduction system,the CO2 electrocatalyst is the most important part.Although many CO2 electrocatalysts have been developed,efficient catalysts with high activity,selectivity and stability are still lacking.Copper sulfide compound,as a low-toxicity and emerging material,has broad prospects in the field of CO2 reduction due to its unique structural and electrochemical properties.Much progress has been achieved with copper sulfide nanocrystalline and the field is rapidly developing.This paper summarizes the preparation,recent progress in development,and factors affecting the electrocatalytic CO2 reduction performance with copper sulfide compound as a catalyst.Prospects for future development are also outlined,with the aim of using copper sulfide compound as a highly active and stable electrocatalyst for CO2 reduction.
出处 《Nano Materials Science》 CAS 2020年第3期235-247,共13页 纳米材料科学(英文版)
基金 the National Postdoctoral Program for Innovative Talents of China,Postdoctoral Science Foundation of China(Grant No.2018M640759) Natural Science Foundation of China(Grant No.21872174 and U1932148) Project of Innovation-Driven Plan in Central South University(Grant No.20180018050001) State Key Laboratory of Powder Metallurgy,International Science and Technology Cooperation Program(Grant No.2017YFE0127800) Hunan Provincial Science and Technology Program(2017XK2026) Shenzhen Science and Technology Innovation Project(Grant No.JCYJ20180307151313532) Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan.
  • 相关文献

参考文献2

二级参考文献35

  • 1He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384.
  • 2Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A.
  • 3Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E.
  • 4Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627.
  • 5周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466.
  • 6Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G.
  • 7Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786.
  • 8Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220.
  • 9Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799.
  • 10Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885.

共引文献11

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部