摘要
在FPGA上实现YOLO等目标检测算法,需要从模型量化到硬件优化等多种优化方法.为了缩短硬件延时,使用了三种技术:(1)利用层融合和位宽量化策略来降低计算复杂度;(2)利用具有padding跳过技术的基于列的流水线架构来减少启动时间;(3)利用设计空间探索算法来平衡流水线时间,提高DSP使用效率.为了验证提出的神经网络加速器架构,在ZC706 FPGA上实现了具有1280×384输入的YOLO网络.与传统加速器相比,取得了1.97倍的延迟缩减或者1.54倍的DSP效率提升.
Implementing object detection algorithms,such as YOLO,in FPGA requires multi-level optimization,starting from model quantization to hardware optimization.To optimize hardware latency,three techniques are used:(1)bit-width quantization and layer fusion strategies are used to minimize the computation complexity,(2)a column-based pipeline architecture with padding skip technique is introduced to reduce the start-up time of pipeline and(3)a design space exploration algorithm is proposed to balance the pipeline and improve the DSP efficiency.To demonstrate the proposed neural network accelerator architecture,YOLO with 1280×384 input is implemented on ZC706 FPGA and achieves a 1.97×latency reduction or a 1.54×DSP efficiency improvement over traditional accelerators.
作者
李岑
贺光辉
LI Cen;HE Guang-hui(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《微电子学与计算机》
北大核心
2020年第7期6-11,共6页
Microelectronics & Computer
基金
国家重点研发计划(2016YFE0116900)。