期刊文献+

卷积神经网络在轴承故障诊断中的可解释性探讨 被引量:7

Interpretability Discussion on Convolutional Neural Network in Bearing Fault Diagnosis
下载PDF
导出
摘要 以轴承为例,对卷积神经网络在故障诊断领域中的可解释性进行了探讨,采用Grad-CAM方法,基于可视化的角度建立了神经网络的重点激活区域与目标类别之间的联系,并且利用凯斯西储大学的轴承数据库,分别从时域和频域的角度对LeNet,AlexNet和ResNet-18这3种应用较广的卷积神经网络结构进行了验证,结果表明,卷积神经网络在轴承故障诊断领域中对于样本的分类识别与人为的认知规律存在基本的相似性,可以为卷积神经网络在故障诊断领域的工程应用提供参考。 Taking the bearings as examples,the interpretability of convolutional neural network(CNN)in the field of fault diagnosis is discussed.The Grad-CAM method is applied to establish the relationship between key activation area of CNN and target category based on perspective of visualization.By utilizing bearing dataset from Case Western Reserve University,the validation is carried out from perspective of time domain and frequency domain via three widely used CNN structures:LeNet,AlexNet and ResNet-18.The results indicate that there is a basic similarity between classification and identifucation of samples by CNN and human recognition rules in the field of bearing fault diagnosis,which provide a reference for application of CNN in the field of fault diagnosis.
作者 张俊鹏 杨志勃 陈雪峰 翟智 刘一龙 ZHANG Junpeng;YANG Zhibo;CHEN Xuefeng;ZHAI Zhi;LIU Yilong(State Key Laboratory for Manufacturing Systems Engineering,Xi′an Jiaotong University,Xi′an 710049,China;School of Mechanical Engineering,Xi′an Jiaotong University,Xi′an 710049,China)
出处 《轴承》 北大核心 2020年第7期54-60,共7页 Bearing
基金 国家自然科学基金项目(51875433)。
关键词 滚动轴承 故障诊断 卷积神经网络 可视化 rolling bearing fault diagnosis convolution neural network visualization
  • 相关文献

参考文献1

二级参考文献16

  • 1GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 2HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 3KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 4BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 5WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 6BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 7ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 9JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.
  • 10LEI Yaguo, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547.

共引文献322

同被引文献94

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部