期刊文献+

基于SRM分割和分层线段特征的船舶目标检测方法 被引量:2

Ship target detection method based on SRM segmentation and hierarchical line segment features
下载PDF
导出
摘要 针对高分辨率遥感图像细节丰富、纹理复杂,分析困难的问题,且船舶长宽比特征是一个很重要的特征,提出一种基于SRM分割和分层线段特征提取的船舶目标检测方法.利用分层线段搜索更新以及合并附近在阈值下的线段进行快速检测船舶目标.实验结果表明,该检测方法能够有效地检测出高分辨率遥感图像的船舶目标,不需要太多的参数和训练样本,且采用分层线段特征提取方法的性能优于其他常用方法. In this paper,a ship target detection method based on SRM segmentation and hierarchical line segment feature extraction is proposed for high resolution remote sensing images.Because of the rich details and complex texture of high resolution remote sensing images,it is difficult to analyze them.The ship′s length-width ratio is an important feature.Based on line segment extraction,the ship′s target can be quickly detected by searching and updating the layered line segments and merging the adjacent line segments under the threshold.The experimental results show that the proposed method can effectively detect ship targets in high-resolution remote sensing images,and the performance of the hierarchical line segment feature extraction method is better than other commonly used methods.At the same time,the ship detection method in this paper does not need too many parameters and training samples.
作者 齐亮 陈牮华 王东 陈连凯 王伟 董梁 QI Liang;CHEN Daihua;WANG Dong;CHEN Liankai;WANG Wei;DONG Liang(School of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003,China;Acdemic Affairs Office, Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2020年第3期34-40,共7页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 SRM分割 船舶检测 分层线段 特征提取 SRM segmentation ship detection hierarchical line segment feature extraction
  • 相关文献

参考文献11

二级参考文献92

  • 1骆成凤,刘正军,王长耀,牛铮.基于遗传算法优化的BP神经网络遥感数据土地覆盖分类[J].农业工程学报,2006,22(12):133-137. 被引量:17
  • 2肖利平,曹炬,高晓颖.复杂海地背景下的舰船目标检测[J].光电工程,2007,34(6):6-10. 被引量:33
  • 3储昭亮,王庆华,陈海林,徐守时.基于极小误差阈值分割的舰船自动检测方法[J].计算机工程,2007,33(11):239-241. 被引量:25
  • 4GonzalezRC,WoodRE.数字图像处理(Matlab版)[M].北京:电子工业出版社,2007.
  • 5Zabidi M M A, Mustapa J, et al. Embedded vision systems for ship recognition//IEEE TENCON. Washington DC, USA: IEEE Computer Society, 2009: 1-5.
  • 6Alves J, Herman J, Rowe N C. Robust Recognition of Shiptypes from an Infrared Silhouette. Monterey, CA, USA: Naval Postgraduate School, 2004.
  • 7Luo Q, Khoshgoftaar T M, et al. Classification of ships in surveillance video//IEEE International Conference Information Reuse and Integration. Washington DC, USA: IEEE Computer Society, 2006: 432-437.
  • 8Li H, Wang X. Automatic recognition of ship types from infrared images using support vector machines//International Conference on Computer Science and Software Engineering. Washington DC, USA: IEEE Computer Society, 2008, 6:483-486.
  • 9Lan J, Wan L. Automatic ship target classification based on aerial images //Proceedings of SPIE. Bellingham Wash: SPIE, 2009,7156(12):1-10.
  • 10Antelo J, Ambrosio G, Gonzalez J, et al. Ship detection and recognition in high resolution satellite images//IEEE International Geoscience and Remote Sensing Symposium. Washington DC, USA: IEEE Computer Society, 2009, 4:514-517.

共引文献110

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部