摘要
数学问题无疑是激发人们钻研数学的内在驱动力。通过对数学问题的解构与重构,突破问题解决的疑难,提升解决问题的效率。采用矛盾分析和数学方法相结合的方式研究数学问题。依据问题的共性与个性、运动与静止、批判与构建、整体与部分、对立与统一等相关特征对其进行分类讨论、分离提取、分解重组、分割入微、分化超越,从而建构问题解构与重构的合适路径。
Mathematical problems are undoubtedly the internal driving force that motivates people to study mathematics.Through the deconstruction and reconstruction of mathematical problems,the key of solving problems is broken through,so as to improve the efficiency of solving problems.The mathematical problem is studied by means of contradiction analysis and mathematical method.According to the generality and individuality of the problem,movement and stillness,criticism and establishment,whole and part,opposition and unity and other relevant characteristics,the classification of discussion,separation and extraction,decomposition and reorganization,segmentation into micro,differentiation and transcendence,so as to construct the appropriate path of problem deconstruction and reconstruction.
作者
姬梁飞
JI Liang-fei(Huazhong University of Science&Technology,Wuhan Hubei 430074,China)
出处
《衡阳师范学院学报》
2020年第3期29-32,共4页
Journal of Hengyang Normal University
基金
广东省教育科学“十三五”规划2018年度资助课题“国际比较视野下中学生数学素养评价及培育途径研究”(课题批准号2018YQJK079)。
关键词
数学问题
问题解决
数学方法
矛盾分析
mathematical problems
problem solving
mathematical method
contradiction analysis