摘要
用函数分层分解和权不等式等工具,借助Hardy算子在变指标Lebesgue空间的性质与有界平均振荡函数空间(BMO)函数的性质,给出变指标分数次Hardy算子与BMO函数生成的高阶交换子在变指数Herz-Morrey空间上的加权有界性.
By using hierarchical decomposition of function and the weighted inequalities,and by means of the boundedness of Hardy operator on variable Lebesgue spaces and the properties of bounded mean oscillation function space(BMO)functions,the author gave the boundedness of the higher order commutators generated by fractional Hardy operators with variable index and BMO functions on weighted Herz-Morrey spaces with variable exponent.
作者
辛银萍
XIN Yinping(School of Information Engineering,Lanzhou University of Finance and Economics,Lanzhou 730010,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第4期791-797,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11561062)
甘肃省高等学校创新能力提升项目(批准号:2020B-142)
兰州财经大学高等教育教学改革研究项目(批准号:LJY201903).