摘要
考虑一类四阶非线性耦合双曲方程组解的生命跨度下界估计,通过构造合适的控制函数,利用能量估计法和Sobolev嵌入定理,给出控制函数满足的一阶微分不等式,并通过分析微分不等式的性质,给出所研究问题解的生命跨度下界估计.
We considered the lower bound for the lifespan of the solutions to a class of fourth-order nonlinear coupled hyperbolic systems.By constructing the appropriate control function,using the energy estimate method and Sobolev embedding theorem,we gave the first-order differential inequality satisfied by the control function,and gave the estimate of the lower bound for the lifespan of the solution of the problem by analyzing the properties of differential inequalities.
作者
陈洁姝
金鑫
CHEN Jieshu;JIN Xin(College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第4期864-867,共4页
Journal of Jilin University:Science Edition
基金
吉林省科技厅发展计划项目(批准号:2015020458NY).
关键词
双曲型方程
能量估计法
下界估计
hyperbolic equation
energy estimate method
estimate of lower bound