摘要
针对传感器数据的多样性,提出一种基于小波和神经网络数据融合的改进方法.首先,对传感器数据进行预处理;然后,用小波和BP神经网络相结合的方法优化数据;最后,利用计算传感器可信度对数据进行融合.传感器数据融合效果对比实验结果表明,该算法针对数据预处理和数据融合的稳定性和有效性均较好,融合结果的离散程度优于加权数据融合和Kalman数据融合等方法.
In view of the diversity of sensor data,we proposed an improved method based on wavelet and neural network data fusion.Firstly,the sensor data was pre-processed.Secondly,wavelet and BP neural network were combined to optimize the data.Finally,the data was fused by calculating the credibility of the sensor.The experimental results of the sensor data fusion effect show that the algorithm is stable and effective for data processing and data fusion.The degree of dispersion of the fusion result is better than that of weighted data fusion,Kalman data fusion and other methods.
作者
陈英
董思羽
CHEN Ying;DONG Siyu(School of Software,Nanchang Hangkong University,Nanchang 330063,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第4期953-959,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61762067).