期刊文献+

基于可达查询的个性化PageRank算法

A research on personalized PageRank algorithm based on accessible query
下载PDF
导出
摘要 为了提高个性化PageRank算法在大型网络图中的计算效率,提出基于可达查询的PPR算法。该算法采用一定的分割方法将大图上的计算转移到子图上,通过可达查询算法快速删除所有与计算无关的节点与边,得到源节点的可达子图,在可达子图上计算节点的近似PPR估计值。实验结果证明,该算法可显著提高PPR的计算效率。 In order to improve the computing efficiency of personalized PageRank algorithm in large network graph,PRR algorithm based on accessible query is proposed.The main idea of the algorithm is to transfer the calculation on the large graph to the subgraph by using a certain segmentation method.The computational process is as follows:firstly,the accessible subgraph of the source node is obtained by quickly deleting all the nodes and edges that are not related to the computations through the reachable query algorithm,then the approximate PPR estimates of nodes are calculated on the accessible subgraph.The experimental results show that the proposed algorithm can significantly improve the computational efficiency of PPR.
作者 贾瑞娜 张向利 闫坤 张红梅 JIA Ruina;ZHANG Xiangli;YAN Kun;ZHANG Hongmei(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2020年第1期39-43,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61461010,61363031) 广西研究生教育创新计划(2017YJCX22)。
关键词 个性化PageRank算法 分割 可达查询 personalized PageRank algorithm segmentation reachable query
  • 引文网络
  • 相关文献

参考文献2

二级参考文献16

  • 1Page L,Brin S,Motwani R. The PageRank citation ranking:Bringing order to the web[R].State of California,Stanford University,1999.
  • 2Jeh G,Widom J. Scaling personalized web search[A].New York:ACM,2003.271-279.
  • 3Bahmani Ba,Chowdhury A,Goel A. Fast incremertal and personalized PageRank[J].VLDB Endowment,2010,(03):173-184.
  • 4Taher H.-Haveliwala. Topic-Sensitive PageRank: a Context-Sensitive ranking algorithm for web search[J].TKDE,2003,(04):784-796.
  • 5Nie Zaiqing,Zhang Yuanzhi,Wen Jirong. Object-Level ranking:Bringing order to web objects[A].New York:ACM,2005.567-574.
  • 6Richardson M,Domingos P. The intelligent surfer:Probabilistic combination of link and content information in PageRank[J].Procendings of Advances in Neural Information Processing Systems,2002.1441-1448.
  • 7Fogaras D,Rácz B. Towards scaling fully personalized pagerank:Algorithms,lower bounds,and experiments[J].Internet Mathematics,2005,(03):333-358.
  • 8Lovász L. Random Walks on Graphs:A Survey[J].Combinatorics Paul Erd(o)s is Eighty,1993,(01):1-46.
  • 9Kamvar S,Haveliwala T,Manning C. Exploiting the block structure of the web for computing pagerank[R].State of California,Stanford University,2003.
  • 10Chakrabarti S. Dynamic personalized pagerank in entity-relation graphs[A].New York:ACM,2007.571-580.

共引文献6

;
使用帮助 返回顶部