期刊文献+

基于鲁棒核偏最小二乘法的化工过程故障检测

Fault detection for chemical process based on robust KPLS
下载PDF
导出
摘要 针对传统核偏最小二乘法不能对包含离群点的非线性数据进行有效建模的问题,提出了鲁棒核偏最小二乘(R-KPLS)算法。该算法先利用鲁棒标准化代替传统的标准化,然后利用加权策略与传统的核偏最小二乘法结合,实现鲁棒建模。TE数据仿真实验结果表明,R-KPLS算法比传统KPLS算法在处理含有离群点的数据时具有更好的检测性能。 Aiming at the problem that the traditional kernel partial least squares method can’t effectively model the nonlinear data including outliers, a robust kernel partial least squares(R-KPLS) algorithm is proposed. The algorithm first uses robust standardization instead of traditional standardization, and then uses the weighting strategy combined with the traditional kernel partial least squares method to achieve robust modeling. The simulation results of TE data show that the R-KPLS algorithm has better detection performance than the traditional KPLS algorithm in processing data with outliers.
作者 张世鹏 张向利 张红梅 ZHANG Shipeng;ZHANG Xiangli;ZHANG Hongmei(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2020年第1期44-48,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61363031,61461010) 广西研究生教育创新计划(2017YJCX22)。
关键词 鲁棒KPLS 非线性 离群点 robust KPLS non-linear outliers
  • 相关文献

参考文献6

二级参考文献116

  • 1谢磊,张建明,王树青.A Robust Statistical Batch Process Monitoring Framework and Its Application[J].Chinese Journal of Chemical Engineering,2004,12(5):682-687. 被引量:4
  • 2MOLLER F S, FRESE J, BRO R. Robust methods for multivariate data analysis [ J ]. Journal of Chemometrics, 2005,19(10) :549-563.
  • 3MORAD K, SVRCEK W Y, MCKAYI. A robust direct approach for calculating measurement error covariance matrix [ J]. Computer and Chemical Engineering, 1999, 23 ( 7 ) : 64-79.
  • 4CHEN J, BANDONI A, ROMAGNOLI J A. Robust statistical process monitoring [ J ]. Computer and Chemical Engineering, 1996,20( s1 ) :497-502.
  • 5HUBERT M, ROUSSEEUW P J, VERBOVEN S. A fast method for robust principal components with applications to chemometrics [ J ]. Chemometrics and Chemical Engineering, 2002,60 ( 1/2 ) : 101-111.
  • 6YANG T N, WANG S Q. Robust algorithms for principal component analysis [ J ]. Pattern Recognition, 1999, 20 (9) : 927-933.
  • 7SARBU C, POP H F: Principal component analysis versus fuzzy principal Component analysis a case Study: the quality of danube water (1985-1996) [ J ]. Talanta, 2005,65 (5) :1 215-1 220.
  • 8WANG D, ROMAGNOLI J A. Robust multi-scale principal component analysis with applications to process monitoring [ J ]. Journal of Process Control, 2005,15 ( 8 ): 869- 882.
  • 9LI Y. On incremental and robust subspace learning [ J ]. Pattern Recognition, 2004,37 (7) : 1 509-1 518.
  • 10HUBER P J. Robust estimation of a location parameter [ J ]. The Annals of Mathematical Statistics. 1964, 35 (1) : 73-101.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部