摘要
应用Levenberg-Marquardt-型(LM-型)算法,求解系数为一般张量的张量方程,并证明该算法在一定条件下局部二次收敛。数值算例表明该算法是有效的。
Tensor equations, as a special kind of nonlinear equation, has many applications in engineering and scientific calculation. In order to solve tensor equations with a general tensor coefficients, a Levenberg-Marquardt-type(LM-type) method is proposed, and it is proved that the algorithm is locally quadratic convergent under certain conditions. Numerical examples show that the algorithm is effective.
作者
王丽
刘奇龙
段雪峰
WANG Li;LIU Qilong;DUAN Xuefeng(School of Information Engineering,Shandong Management University,Jinan 250357,China;School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025,China;School of Mathematics and Computational Science,Guilin University of Electronic Science and Technology,Guilin 541004,China)
出处
《桂林电子科技大学学报》
2020年第1期66-69,共4页
Journal of Guilin University of Electronic Technology
基金
国家自然科学基金(11671105
11561015)
贵州师范大学博士科研基金(GZNUD201726)
山东省青创科技计划(2020KJN014)。
关键词
一般张量
张量方程
LM-型方法
局部误差界
二次收敛
general tensors
tenor equations
LM-type method
local error bounds
quadratic convergence