期刊文献+

求解张量方程的Levenberg-Marquardt-型方法

Levenberg-Marquardt-type method for solving tensor equations
下载PDF
导出
摘要 应用Levenberg-Marquardt-型(LM-型)算法,求解系数为一般张量的张量方程,并证明该算法在一定条件下局部二次收敛。数值算例表明该算法是有效的。 Tensor equations, as a special kind of nonlinear equation, has many applications in engineering and scientific calculation. In order to solve tensor equations with a general tensor coefficients, a Levenberg-Marquardt-type(LM-type) method is proposed, and it is proved that the algorithm is locally quadratic convergent under certain conditions. Numerical examples show that the algorithm is effective.
作者 王丽 刘奇龙 段雪峰 WANG Li;LIU Qilong;DUAN Xuefeng(School of Information Engineering,Shandong Management University,Jinan 250357,China;School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025,China;School of Mathematics and Computational Science,Guilin University of Electronic Science and Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2020年第1期66-69,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11671105 11561015) 贵州师范大学博士科研基金(GZNUD201726) 山东省青创科技计划(2020KJN014)。
关键词 一般张量 张量方程 LM-型方法 局部误差界 二次收敛 general tensors tenor equations LM-type method local error bounds quadratic convergence
  • 相关文献

参考文献4

二级参考文献55

  • 1Levenberg K. A method for the solution of certain non- linear problems in least squares[J]. Quart Appl Math, 1944,2 : 164-166.
  • 2Marquaret D W. An algorithm for least-squares estima- tion of nonlinear inequalities[J]. SIAM J Appl Math, 1962,11.431-441.
  • 3Fan Jinyan. Convergence rate of the trust region method for nonlinear equations under error bound condition[J]. Computational Optimization and Applications, 2005,34 z 215-227.
  • 4Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimiza- tion[J]. SIAM Journal on Optimization, 2004,14 (4) 1043-1056.
  • 5Yamakawa E, Fukushima M. Testing parallel bariable transformation[J]. Comput Optim Appl, 1999,13 : 253- 274.
  • 6More J J, Garhow B S, Hillstrome K E. Testing uncon- strained optimization software[J]. ACM Trans Math Software, 1981(7) : 17-41.
  • 7Yuan Y X. Trust region algorithms for nonlinear equa- tions[J]. Information, 1998 (1) : 7-20.
  • 8Buchberger B. GrSbner basis: an algorithmic method in polynomial ideal theory. In: Bose N K, ed. Multidimensional System Theory. Dordrecht, Boston, Lancaster: D Reidel Publishing Company, 1985, 184-232.
  • 9Cai D, He X, Han J. Tensor space model for document analysis. In: International Conference on Research and Development in Information Retrieval. 2006, 625-626.
  • 10Chang K, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6:507-520.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部