期刊文献+

基于FasterMDNet的视频目标跟踪算法 被引量:3

Video Target Tracking Algorithm Using FasterMDNet
下载PDF
导出
摘要 多域卷积神经网络(MDNet)算法在卷积层采用选择性搜索的方式来提取候选框,因此它没有共享完整图像特征,从而导致在线视频目标跟踪速度慢。针对这个问题,提出一种快速多域卷积神经网络(FasterMDNet)视频目标跟踪算法。FasterMDNet是建立在MDNet基础上的一种模型,在卷积层后面引入RPN(Region Proposal Network)网络,优化了损失函数,共享完整图像卷积特征,加快候选区域建议框(ROI)更高效的生成;为了更好地获得目标和背景信息表示,在RPN网络后加入ROIAlign层,对提取的候选区域建议框特征图用双线性插值方法来提高感受野的分辨率。该算法对目标跟踪基准数据集OTB2013、OTB2015、VOT2016进行了评估,并与前沿的跟踪算法做对比,实验结果证明,该算法跟踪准确率优于其他对比方法,并且对比相同实验环境下MDNet算法,在线跟踪速度提高了近12倍。 Multi-Domain convolutional neural Network(MDNet)algorithm uses selective search in the convolutional layer to extract candidate boxes,therefore,it cannot share full image features,resulting in slow tracking of online video target.A Faster Multi-Domain convolutional neural Network(FasterMDNet)video target tracking algorithm is proposed to solve this problem.FasterMDNet is based on MDNet,it adds the RPN(Region Proposal Network)behind the convolutional layer,optimizes the loss function,shares the full image convolution feature,and accelerates the generation of candidate ROI(Region of Interest)more efficiently.In order to better obtain the target and background information representation,the ROIAlign layer is added after the RPN network,for the feature map of extracted candidate ROI,which uses bilinear interpolation to improve receptive field resolution.The proposed algorithm is evaluated in multiple target tracking benchmark datasets including OTB2013,OTB2015,and VOT2016,and compares with the state-of-the-art algorithm.Experimental results show that tracking performance of the proposed algorithm is better than other comparison methods,and the online tracking speed is nearly 12 times faster than MDNet algorithm in the same experimental environment.
作者 王玲 王辉 王鹏 李岩芳 WANG Ling;WANG Hui;WANG Peng;LI Yanfang(College of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第14期123-130,共8页 Computer Engineering and Applications
基金 吉林省科技发展计划技术攻关项目(No.20190302118GX)。
关键词 多域卷积神经网络(MDNet) 快速多域卷积神经网络(FasterMDNet) 视频目标跟踪 区域建议网络(RPN) 候选区域建议框(ROI) ROIAlign Multi-Domain convolutional neural Network(MDNet) Faster Multi-Domain convolutional neural Network(FasterMDNet) video target tracking Region Proposal Network(RPN) Region of Interest(ROI) ROIAlign
  • 相关文献

参考文献2

二级参考文献89

  • 1史泽林,王俊卿,黄莎白.复杂场景下的变形目标跟踪[J].光电工程,2005,32(1):31-35. 被引量:4
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149.
  • 4Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38.
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518.
  • 6Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675.
  • 7Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120.
  • 8Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097.
  • 9Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585.
  • 10Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Un- derstanding, 2009, 113(3): 345-352.

共引文献178

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部