期刊文献+

改进卷积神经网络SAR图像去噪算法 被引量:8

Improved Convolutional Neural Network for SAR Image Despeckling Algorithm
下载PDF
导出
摘要 合成孔径雷达(SAR)通常会被一种称为散斑的乘性噪声干扰,这使得图像的解释变得困难。为解决这一问题,提出一种改进卷积神经网络SAR图像去噪方法。对图像进行下采样再对下采样子图像进行卷积提取特征,这可以有效扩大感受野提高去噪效率;为了减少梯度消失问题和提高模型去噪性能,网络又引入了跳跃连接和残差学习策略;利用仿真和实测数据对网络进行测试与评估,实验结果表明提出的方法具有良好的去噪效果和较高的计算效率,对比其他去噪方法,该方法不仅去噪效果好,而且效率更高。 Synthetic Aperture Radar(SAR)is often suffered from a multiplicative noise commonly referred to as speckle which makes the interpretation of images difficult.To remove the speckle noise of SAR images,this paper proposes an improved convolutional neural networks approach for SAR image despeckling.The method firstly downsamples the image and then performs convolution to extract feature of the downsampled sub-image,which can effectively expand the receptive field and improve the denoising efficiency.In addition,skip connections and residual learning strategy are added to the despeckling model to reduce the vanishing gradient problem and improve the performance.Finally,simulated and real SAR images are utilized to test and evaluate the network.Experimental results show that compared with the start-of-art techniques,the proposed method achieves better performance and high efficiency.
作者 钱满 张向阳 李仁昌 QIAN Man;ZHANG Xiangyang;LI Renchang(College of Information and Engineering,Nanchang HangKong University,Nanchang 330063,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第14期176-182,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61761031) 国家航空科学基金(No.20172056002,No.20142056005) 南昌航空大学博士科研启动基金(No.EA201704616) 南昌航空大学教学改革资助项目(No.KCPY1779)。
关键词 合成孔径雷达(SAR)图像去噪 卷积神经网络 图像下采样 跳跃连接 残差学习 Synthetic Aperture Radar(SAR)image despeckling convolutional neural networks image downsampling skip connections residual learning
  • 相关文献

参考文献6

二级参考文献63

  • 1王正明,谢美华.偏微分方程在图像去噪中的应用[J].应用数学,2005,18(2):219-224. 被引量:17
  • 2梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 3何钰,徐青,邢帅.基于偏微分方程的去噪方法[J].测绘科学技术学报,2007,24(4):284-286. 被引量:5
  • 4Goodman J W. Some fundamental properties of speckle [J]. Journal Optical Society America, 1976, 6 ( 11 ) : 1145-1150.
  • 5Liu Z X, Hu S H, Xiao Y, Qu G Z, Kim K S, SAR im- age target extraction based on 2-D leapfrog filtering, Pro- ceedings of 2010 IEEE 10th International Conference on Signal Processing, (ICSP2010) , 2010, pp. 1943-1946.
  • 6肖扬,张颖康,一种基于二维混合变换的SAR回波信号去噪预处理方法,中国国家知识产权局,申请号:2009100083345.7,申请13期:2009-05-04.
  • 7Do M N. Directional multiresolution image representation [ D]. PhD thesis, EPFL, Lausanne, Switzerland, 2001.
  • 8Do M N, Vetterli M. Contourlets: A directional muhireso- lution image representation[ C]. Proc of IEEE International Conference on Image Processing. Rochester, NY: 2002. 357 -360.
  • 9J W Goodman. Some fundamental properties of speckle [ J ]. J. Opt. Soc. Am, 1976,66 ( 11 ) : 1145-1150.
  • 10Cunha A L, Zhou J P, and Do M N. The nonsubsampled Contourlet transform: Theory, design and application. IEEE Trans. on Image Processing, 2006, 15 (10) : 3059- 3101.

共引文献63

同被引文献61

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部