期刊文献+

基于水化反应动力学的深水固井井筒温度与压力耦合预测模型 被引量:13

A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water
下载PDF
导出
摘要 针对深水固井候凝期间水泥浆温度、压力与水化反应之间复杂的相互作用,基于水泥浆水化反应动力学建立深水固井候凝井筒温度压力耦合模型,利用差分法进行耦合数值求解,并将计算结果与实验及现场数据进行对比以验证模型的准确性。考虑水化反应、温度、压力之间的相互作用时,新建立的固井井筒温度压力耦合模型计算精度在5.6%以内,能够很好地满足工程要求。结合深水井开展数值模拟分析候凝期间井筒温度、压力、水化度的演化规律,研究结果表明:水泥浆温度在水化热作用下会迅速升高;随着水泥浆胶凝强度的发展,水泥浆的孔隙压力会逐渐降低,甚至低于地层压力,从而引发气窜;瞬态变化的温度和压力会影响水泥浆水化反应速率,井筒深部的水泥浆在高温高压环境下具有更快的水化反应速率;对于深水固井作业来说,泥线附近的低温环境会延长水泥浆的候凝时间,导致固井工作周期变长。 Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was established.The differential method was used to do the coupled numerical calculation,and the calculation results were compared with experimental and field data to verify the accuracy of the model.When the interactions between temperature,pressure and hydration reaction are considered,the calculation accuracy of the model proposed is within 5.6%,which can meet the engineering requirements.A series of numerical simulation was conducted to find out the variation pattern of temperature,pressure and hydration degree during the cement curing.The research results show that cement temperature increases dramatically as a result of the heat of cement hydration.With the development of cement gel strength,the pore pressure of cement slurry decreases gradually to even lower than the formation pressure,causing gas channeling;the transient temperature and pressure have an impact on the rate of cement hydration reaction,so cement slurry in the deeper part of wellbore has a higher rate of hydration rate as a result of the high temperature and pressure.For well cementing in deep water regions,the low temperature around seabed would slow the rate of cement hydration and thus prolong the cementing cycle.
作者 王雪瑞 孙宝江 刘书杰 李中 刘正礼 王志远 李昊 高永海 WANG Xuerui;SUN Baojiang;LIU Shujie;LI Zhong;LIU Zhengli;WANG Zhiyuan;LI Hao;GAO Yonghai(School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China;National Engineering Laboratory for Testing and Detection Technology of Subsea Equipment,Qingdao 266580,China;CNOOC Research Institute,Beijing 100027,China;Zhanjiang Branch of CNOOC Ltd.,Guangdong 524057,China;CNOOC Ltd.Shenzhen Branch,Guangdong 518067,China)
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2020年第4期809-818,共10页 Petroleum Exploration and Development
基金 国家自然科学基金(U1762216) 国家科技重大专项“大型油气田及煤层气开发”(2016ZX05028-001-03) 中国海洋石油集团有限公司“十三五”科技重大项目(CNOOC-KJ135ZDXM05LTD06SHENHAI,CNOOC-KJ135ZDXM24LTDZJ04)。
关键词 深水钻井 固井 水化反应动力学 温度场 压力场 耦合预测模型 deep-water drilling well cementing hydration reaction kinetics temperature field pressure field coupled prediction model
  • 相关文献

参考文献6

二级参考文献30

  • 1钻井手册(甲方)编写组.钻井手册(甲方)[M].北京:石油工业出版社,1991..
  • 2塔里木石油勘探开发指挥部钻井监督办.固井准备[J].-,1995,14.
  • 3塔里木石油勘探开发指挥部钻井监督办.塔里木油田各区块的地温统计与分析[J].-,1995,7.
  • 4何世明.井内液体温度的预测及分布规律的研究:博士学位论文[M].四川南充:西南石油学院,1998..
  • 5塔里木石油勘探开发指挥部钻井监督办.固井问题分析[J].-,1996,6.
  • 6Bittleston S H. A two-dimensional simulator to predict circulating temperatures during cementing operations[C]. SPE 20448, 1990.
  • 7Romero J, Touboul E. Temperature prediction for deepwater wells: a field validated methodology[C]. SPE 49056, 1998.
  • 8Chen Zhongming. Accurate prediction wellbore transient temperature profile under multiple temperature gradients : finite difference approach and case history[C]. SPE 84583,2003.
  • 9David S, Mark T. Mathematical temperature simulators for drilling deepwater ht/hp wells: comparisons, applications, and limitations[C]. SPE 105437, 2007.
  • 10SWADDIWUDHIPONG S,CHEN D,ZHANG M H.Simulation of the exothermic hydration process of portland cement[J].Adv Cem Res,2002,14(2):61-69.

共引文献149

同被引文献149

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部