摘要
针对一类具有非线性信号产生的趋化模型进行了研究,主要利用常数变易法、半群理论、以及非齐次线性方程的正则化性质等方法,证明了二维及以上有界区域上具有齐次Neumann边值条件的该模型解的全局存在性和有界性.
In this paper,a chemotaxis model with nonlinear signal secretion under homogeneous Neumann boundary conditions in two or higher smooth bounded domains is studied.By means of the constant variation formula,the semigroup theory,the regularization properties of inhomogeneous linear heat equations,it is proved that the corresponding initial-boundary value problem possesses a unique global bounded classical solution.
作者
孙傲霜
SUN Ao-shuang(College of Mathematics and Information,China West Normal University,Nanchong 637002,Sichuan,China)
出处
《韶关学院学报》
2020年第6期8-12,共5页
Journal of Shaoguan University
基金
四川省教育厅重点项目(18ZA0478).
关键词
非线性信号产生
趋化性
全局存在性
有界性
nonlinear signal secretion
chemotaxis
global existence
boundedness