摘要
该文研究了一类象征a(x,ξ)属于L∞Sρ^m(R^n),ρ≤1的拟微分算子在加权Morrey空间Lω^p,κ(R^n)上的有界性问题,其中ω为Ap权.类似Kening和Staubach证明其Lp有界性的方法,该文获得了当q≥p时,如果m和p满足一定的条件,则拟微分算子在加权Morrey空间Lω^q,κ(R^n)上有界。
In this paper,we study some sufficient conditions for the boundedness of a class of pseudo-differential operators T with symbols a(x,ξ)∈L∞ Sρ^m(R^n) and ρ≤1 on weighted Morrey spaces Lω^p,k(R^n),where ω∈A p.Namely,under some conditions of m and p,the pseudo-differential operators T are bounded on weighted Morrey spaces Lω^q,κ(R^n)for q≥p.Our proof follows Kening and Staubach’s method on L^p boundedness.
作者
邓宇龙
DENG Yu-long(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105;Institute of Computational Mathematics,School of Science,Hunan University of Science and Engineering,Yongzhou 425199 China)
出处
《湘潭大学学报(自然科学版)》
CAS
2020年第2期76-82,共7页
Journal of Xiangtan University(Natural Science Edition)
基金
湖南省教育厅科学研究项目(18C1073)。