期刊文献+

LpSρ^m拟微分算子在Morrey空间上的估计 被引量:1

Estimate for LpSρ^m Pseudo-differential Operators on Morrey Spaces
下载PDF
导出
摘要 该文给出了LpSρ^m拟微分算子在Morrey空间上的有界性.令1<r<∞,1<q<∞以及p≥2,并且满足1/r=1/p+1/q.假设0<κ<1/q,ρ≤1,a(x,ξ)∈LpSρ^m是拟微分算子Ta的象征,则对于m<n(ρ-1)p′,Ta是M r,rκ到M q,qκ有界的. In this paper,we obtain boundedness of LpSρ^m pseudo-differential operators on the Morrey spaces.Let 1<r<∞,1<q<∞and p≥2 with 1/r=1/p+1/q.Suppose 0<κ<1/q,ρ≤1 and a(x,ξ)∈LpSρ^m is a symbol of pseudo-differential operators T a.Then T a is bounded from M r,rκinto M q,qκprovided m<n(ρ-1)p′.
作者 周游 邓宇龙 龙顺潮 ZHOU You;DENG Yu-long;LONG Shun-chao(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105 China)
出处 《湘潭大学学报(自然科学版)》 CAS 2020年第2期83-88,共6页 Journal of Xiangtan University(Natural Science Edition)
基金 湖南省教育厅项目(18C1073)。
关键词 HARDY-LITTLEWOOD 极大算子 拟微分算子 MORREY 空间 Hardy-Littlewood maximal operator pseudo-differential operator Morrey spaces
  • 相关文献

参考文献1

二级参考文献28

  • 1Benyi, A., Maldonado, D., Naibo, V., et al.: On the H6rmander classes of bilinear pseudodifferential operators. Integr. Equ. Oper. Theory, 67, 341-364 (2010).
  • 2Benyi, A., Torres, R. H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett., 11, 1-11 (2004).
  • 3Bernieot, F.: A bilinear pseudodifferential calculus. J. Geom. Anal., 20, 39 62 (2010).
  • 4Beraicot, F., Torres, R. H.: Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus. Anal. PDE, 4, 551-571 (2011).
  • 5Bui, T. A., Duong, X. T.: Weighted norm inequalities for multilinear operators and applications to multi- linear Fourier multipliers. Bull. Sci. Math., 137, 63-75 (2013).
  • 6Coifman, R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212, 315-331 (1975).
  • 7Coifman, R., Meyer, Y.: Commutateurs d'integrales singulieres et operateurs multi-lin6aires. Ann. Inst. Fourier, Grenoble, 28, 177-202 (1978).
  • 8Coifman, R., Meyer, Y.: Au delh des operateurs pseudo-differentiels. Astdrisque, 57, 1 185 (1978).
  • 9Coifman, R., Meyer, Y.: Wavelets. CMderdn Zygmund and Multilinear Operators, Translated from the 1990 and 1991 French originals by David Salinger. Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge, 1997.
  • 10Dai, W., Lu, G.: Lp estimates for multi-linear and multi-parameter pseudo-differential operators, preprint, available at http://arxiv.org/abs/1308.4062.

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部