期刊文献+

基于生成对抗网络的乳腺癌组织病理图像样本均衡化 被引量:3

Generative adversative nets based sample equalization of breast tumor tissue slice
下载PDF
导出
摘要 针对乳腺癌组织病理图像中各类样本的不均衡性,本研究构建了基于条件控制和深度卷积的两种乳腺癌组织病理图像样本生成对抗网络并生成人造样本,以实现样本均衡化。实验验证了两种网络用于数据均衡化的可靠性,发现在处理不均衡数据时基于深度卷积的生成对抗网络效果更好,基于条件控制的生成对抗网络鲁棒性更强;分析了增加人造样本对深度学习算法的影响。结果表明,本研究提出的数据均衡化方法将训练所得网络的分类准确率平均提升了近5%,生成对抗网络可以缓解深度学习在医学领域的应用中数据分布不平衡的问题。 Aiming at the problem of unbalanced cell data and low classification accuracy of breast tumor tissue sections,we constructed two kinds of mammary cancer cell sample generation antagonism networks based on conditional control and deep convolution to generate artificial samples and accomplish sample equalization.Experiments verified the reliability of the two networks for data equalization.It was found that the effect of conditional deep convolutional generative adversarial networks was better and the robustness of conditional generative adversarial nets was stronger when dealing with unbalanced data.The influence of adding artificial samples on deep learning algorithm is analyzed.The results show that the proposed data equalization method improves the classification accuracy of the trained network by 5%,the generative adversarial nets can alleviate the problem caused by imbalance data in the application of deep learning in the medical field.
作者 杨俊豪 李东升 陈春晓 闫强 陆熊 YANG Junhao;LI Dongsheng;CHEN Chunxiao;YAN Qiang;LU Xiong(Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China;Department of Measurement and Testing Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106)
出处 《生物医学工程研究》 2020年第2期161-166,共6页 Journal Of Biomedical Engineering Research
关键词 机器学习 样本均衡化 生成对抗网络 组织切片 数据增强 Machine learning Sample equalization Generative adversative nets Tissue slice Data augmentation
  • 相关文献

参考文献3

二级参考文献17

  • 1王鹏伟,李滔,吴秀清.一种基于SVM后验概率的MRF分割方法[J].遥感学报,2008,12(2):208-214. 被引量:7
  • 2Kubat M, Holte RC, Matwin S. Machine leaming for the detection of oil spills in satellite radar images. Machine Learning, 1998, 30 (2-3): 195-215.
  • 3Castillo MD, Serrano JI. A multistrategy approach for digital text categorization from imbalanced documents. SIGKDD Explorations, 2004, 6 (1): 70-79.
  • 4Zheng ZH, Wu X, Srihari RK. Feature selection for text categorization on imbalanced data. SIGKDD Explorations, 2004, 6(1): 80-89.
  • 5Cohen G, Hilario M, Sax H. Data imbalance in surveillance of nosocomial infections. Proc. of the 4th International Symposium on Medical Data Analysis. Berlin. 2003. 109-117.
  • 6Yoon K, Kwek S. An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in function genomics. Proc. of the 5th International Conference on Hybrid Intelligent Systems. 2005. 303-308.
  • 7Brefeld U, Scheffer T. AUC maximizing support vector learning. Proc. of ICML Workshop on ROC Analysis in Machine Learning. Bonn. 2005.
  • 8林智勇,郝志峰,杨晓伟.不平衡数据分类的研究现状[J].计算机应用研究,2008,25(2):332-336. 被引量:46
  • 9叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148-156. 被引量:72
  • 10赵玲,陈磊琛,余小陆,张盛意.SVM-KNN分类算法研究[J].计算机与数字工程,2010,38(6):29-31. 被引量:3

共引文献142

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部