期刊文献+

基于深度学习的信息级联预测方法综述 被引量:6

Review of Information Cascade Prediction Methods Based on Deep Learning
下载PDF
导出
摘要 在线社交媒体极大地促进了信息的产生和传递,加速了海量信息之间的传播与交互,使预测信息级联的重要性逐渐突显。近年来,深度学习已经被广泛用于信息级联预测(Information Cascade Prediction)领域。文中主要对基于深度学习的信息级联预测方法的研究现状与经典算法进行分类、梳理与总结。根据信息级联特征刻画的侧重点不同,将基于深度学习的信息级联预测方法分为时序信息级联预测方法与拓扑信息级联预测方法,并进一步将时序信息级联预测方法分为基于随机游走(Random Walk)的方法与基于扩散路径的方法,将拓扑信息级联预测方法分为基于全局拓扑结构的方法与基于邻域聚合的方法;并对每类方法进行详细的原理阐述与优缺点介绍,介绍了信息级联预测领域常用的数据集与评价指标,在宏观与微观两种信息级联预测场景下对基于深度学习的信息级联预测算法进行实验对比,并讨论了一些信息级联预测算法中常用的算法实现细节。最后,总结了该领域未来可能的研究方向与发展趋势。 Online social media greatly promotes the generation and transmission of information,exacerbates the communication and interaction between massive amounts of information,and highlights the importance of predicting information cascades.In recent years,deep learning has been widely used in the field of information cascade prediction.This paper mainly classifies,sorts,and summarizes the current research status of deep learning-based information cascade prediction methods and classic algorithms.According to the different emphasis of information cascade feature characterization,the information cascade prediction method based on deep learning is divided into time series information cascade prediction method and topology information cascade prediction method.The time series information cascade prediction method is further divided into methods based on random walks and methods based on diffusion paths,and the topology information cascade prediction method is divided into methods based on global topological structure and methods based on neighborhood aggregation.This paper details the principles and advantages and disadvantages of each type of method,and introduces the data sets and evaluation indicators commonly used in the field of information cascade prediction,and compares the information cascade prediction algorithms based on deep learning in the macro and micro information cascade prediction scenarios,and discusses some technical details commonly used in information cascade prediction algorithms.Finally,this paper summarizes the field possible future research directions and development trends.
作者 张志扬 张凤荔 谭琪 王瑞锦 ZHANG Zhi-yang;ZHANG Feng-li;TAN Qi;WANG Rui-jin(School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《计算机科学》 CSCD 北大核心 2020年第7期141-153,共13页 Computer Science
基金 国家自然科学基金(61802033,61472064,61602096) 四川省科技计划(2018GZ0087,2019YJ0543) 四川省区域创新合作项目(2020YFQ0018) 博士后基金项目(2018M643453) 广东省国家重点实验室项目(2017B030314131) 网络与数据安全四川省重点实验室开放课题(NDSMS201606)。
关键词 在线社交媒体 深度学习 信息级联预测 级联增量预测 流行度预测 节点预测 Online social media Deep learning Information cascade prediction Cascade size prediction Popularity prediction Node prediction
  • 相关文献

参考文献2

二级参考文献27

  • 1Kang J H, Lerman K, Plangprasopchok A. Analyzing Microblogs with affinity propagation [C] //Proc of the 1st KDD Workshop on Social Media Analytic. New York: ACM, 2010:67-70.
  • 2Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models [C] //Proc of Int AAAI Conf on Weblogs and Social Media. Menlo Park, CA: AAAI, 2010:130-137.
  • 3Xu R, Wunsch D. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks, 2005, 16(3): 645-678.
  • 4Deerwester S, Dumais S, Landauer T, et al. Indexing by latent semantic analysis [J]. Journal of the American Society of Information Science, 1990, 41(6): 391-407.
  • 5Landauer T K, Foltz P W, Laham D. Introduction to Latent Semantic Analysis [J]. Discourse Processes, 1998, 25 (2) 259-284.
  • 6Griffiths T, Steyvers M. Probabilistic topic models [G] // Latent Semantic Analysis: A Road to Meaning. Hillsdale, NJ: Laurence Erlbaum, 2006.
  • 7Hofmann T. Probabilistic latent semantic indexing [C] // Proc of the 22nd Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1999:50-57.
  • 8Salton G, McGill M. Introduction to Modern Information Retrieval [M]. New York: McGraw-Hill, 1983.
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 10Wei X, Croft W B. LDA-based document models for ad hoc retrieval [C] //Proc of the 29th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 2006:178-185.

共引文献170

同被引文献37

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部