期刊文献+

高校云计算数据处理中虚拟机迁移与轮转模式研究 被引量:1

RESEARCH ON VIRTUAL MACHINE MIGRATION AND ROTATION MODE IN DATA PROCESSING OF COLLEGE CLOUD COMPUTING
下载PDF
导出
摘要 针对高校云计算数据处理应用中的虚拟器迁移和数据处理任务调度问题,首先提出一种新颖且高效的数据依赖感知的虚拟机迁移方案(简称为DataAware)。在进行虚拟机迁移时,DataAware考虑了虚拟机之间的数据依赖性和服务器的剩余容量,以此减少迁移产生的网络流量。然后,为了进一步提高云计算中数据处理的性能,提出一种基于轮转模式的同步并行轮转(SPR)调度算法,以减少由数据汇聚而形成的通信瓶颈。最后分别采用仿真实验和理论分析评估所提出方法的性能。仿真实验结果表明,DataAware能够大大地减少网络流量,提高网络性能。通过推导出SPR策略的误差上界,说明采用SPR模式对数据处理任务进行调度能使数据处理算法收敛。 For the issues of virtual machine migration and data processing task scheduling during data processing in college cloud computing,this paper first proposes a novel and efficient Data Aware virtual machine migration algorithm(denoted by DataAware).While migrating the virtual machine,DataAware considers the data dependencies between virtual machines and the remaining capacity of the server to reduce the traffic caused by migration.Then,to improve the performance of data processing applications in cloud computing,we propose a synchronous parallel round robin(denoted by SPR)scheduling scheme to reduce the communication bottleneck caused by data aggregation.Finally,we perform simulation and theoretical analysis to evaluate our proposals.Simulation results show that DataAware can greatly reduce network traffic and improve network performance.We derive the upper bound of the error of SPR,which shows that the scheduling of data processing tasks by SPR mode can make the data processing algorithm converge.
作者 任群 REN Qun(Departmenit of Electronics and Information Engineering,Bozhou University,Bozhou,Anhui 236800,China)
出处 《井冈山大学学报(自然科学版)》 2020年第3期54-59,共6页 Journal of Jinggangshan University (Natural Science)
基金 安徽省高校优秀青年人才项目(gxyq2019119) 安徽省自然科学项目(KJ2018A0820) 亳州学院项目(BYZ2018C05)。
关键词 虚拟机迁移 云计算 数据处理 轮转模式 Virtual machine migration cloud computing data processing Round-Robin Scheme
  • 相关文献

参考文献7

二级参考文献42

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2崔江涛,孙君顶,付少锋,周利华.二次式距离上基于SVD的高维图像索引方法[J].中国图象图形学报,2006,11(4):498-503. 被引量:5
  • 3张泉,邰晓英.基于Bayesian的相关反馈在医学图像检索中的应用[J].计算机工程,2008,44(17):158-161.
  • 4Chang F,Dean J.Bigtable:a distributed storage system forstructured data[C]//7th OSDI,2006:276-290.
  • 5Kekre H B,Thepade S,Sanas S.Improving performance ofmultileveled BTC based CBIR using sundry color spaces[J].International Journal of Image Processing,2010,4(6):620-630.
  • 6Ghemawat S,Gobioff H,Leung S T.The Google file system[C]//Proceedings of the 19th ACM Symposium on OperatingSystems Principles.Bolton Landing:ACM,2003:29-43.
  • 7Dean J,Ghemawat S.MapReduce:a flexible data processingtool[J].Communications of the ACM,2010,53(1):72-77.
  • 8Shvacliko K,Kuang H,Radia S,et al.Hadoop distributedfile system for the grid[C]//Proceedings of the NuclearScience Symposium Conference Record(NSS/MIC),2009:1056-1061.
  • 9Dean J,Ghemawat S.Mapreduce:simplified data processingon large clusters[C]//Proceedings of the 6th Symposium onOperating Systems Design and Implementat.San Francisco:Google Inc,2004:107-113.
  • 10练秋生,李芹,孔令富.融合圆对称轮廓波统计特征和LBP的纹理图像检索[J].计算机学报,2007,30(12):2198-2204. 被引量:15

共引文献35

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部