期刊文献+

虚拟资源分配优化量子学习算法仿真研究 被引量:3

Simulation of Quantum Learning Algorithm on Virtual Resources Allocation Optimization
下载PDF
导出
摘要 针对单一优化目标的基于用户需求或服务质量的虚拟资源分配问题,采用协同决策方法,将用户满意、效能最优和服务质量多目标协同集成,以虚拟资源计算服务租用收益和用户满意度效用最大化为优化目标,构建虚拟资源分配集成优化模型。提出改进的量子粒子群算法,设计种群的个体学习权重因子,增加个体寻优的学习激励策略,设置粒子搜索的学习阈值,解决算法陷入局部最优解的问题。通过种群搜索学习求解,得出满足用户需求、效能和服务质量的虚拟资源作业分配的最优服务收益选择方案。仿真结果表明,改进算法具有较好的全局搜索效率和性能。 For single optimization goal of virtual resource allocation based on user requirements or quality of service,the collaborative decision-making method was adopted to integrate user satisfaction,performance optimization and service quality multi-objectives.The virtual resource computing service lease revenue and user satisfaction utility maximization were optimized,and the virtual resource allocation integration optimization model was constructed.An Improved Quantum Particle Swarm Optimization(IQPSO)algorithm was proposed.The individual learning weight factors of the population were designed,the learning incentive strategy of individual optimization was proposed,the learning threshold of particle search was set,and the problem that the algorithm falls into the local optimal solution was solved.Through population search learning,the optimal service revenue selection scheme for job assignment of virtual resources to meet users’needs,efficiency and service quality was obtained.The simulation results show that the improved algorithm has better global search efficiency and performance.
作者 叶青 方子叶 YE Qing;FANG Zi-ye(School of Computing,Jiangxi University of Traditional Chinese Medicine,Nanchang Jiangxi 330004,China;Jiangxi University of Finance and Economics,Nanchang Jiangxi330013,China)
出处 《计算机仿真》 北大核心 2020年第6期288-292,共5页 Computer Simulation
基金 国家自然科学基金项目(61562045) 江西省教育厅科学技术研究项目(160803) 江西中医药大学重点学科资助计划项目(2016jzzdxk015)。
关键词 量子粒子群算法 强化学习 虚拟资源 效用分配 全局优化 Quantum particle swarm optimization algorithm Reinforcement learning Virtual resources Utility allocation Global optimization
  • 相关文献

参考文献5

二级参考文献96

  • 1丁丁,罗四维,艾丽华.基于双向拍卖的适应性云计算资源分配机制[J].通信学报,2012,33(S1):132-140. 被引量:25
  • 2翁楚良,陆鑫达.一种基于双向拍卖机制的计算网格资源分配方法[J].计算机学报,2006,29(6):1004-1008. 被引量:37
  • 3Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 4Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 5Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 6Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 7Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 8Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 9Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 10Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.

共引文献113

同被引文献35

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部