期刊文献+

基于网格运动约束的遥感图像配准算法 被引量:5

Remote sensing image registration algorithm based on grid motion constraints
下载PDF
导出
摘要 为解决遥感图像配准易受到环境变化等影响,导致匹配鲁棒性低、配准精度差的问题,提出一种基于网格运动约束的遥感图像配准方法。利用AKAZE (accelerated-KAZE)算法提取图像特征点,采用二进制描述子BRISK (binary robust invariant scalable keypoints)对特征点进行有效描述,利用GMS (grid-based motion statistics)基于网格的运动估计方法实现快速且鲁棒性较强的特征点匹配,利用随机采样一致性算法对匹配点对进一步提纯。实验结果表明,该方法提高了匹配速度和匹配正确率,在遇到光照变化、尺度变化及旋转变化的情况下能够保持稳定的匹配效果。 To solve the problem that remote sensing image registration is susceptible to environmental changes,resulting in low matching robustness and poor registration accuracy,a remote sensing image registration method based on grid motion constraints was proposed.The AKAZE(accelerated-KAZE)algorithm was used to extract image feature points,and the binary descriptor BRISK(binary robust invariant scalable keypoints)was used to validate the feature points.The GMS(grid-based motion statistics)estimation method was used to implement fast and robust feature point matching.The random consistency algorithm was utilized to further improve the matching point pairs.Experimental results show that the matching speed and matching accuracy are improved,and the stable matching effect can be maintained in the case of illumination changes,scale changes and rotation changes.
作者 李丹 徐倩南 LI Dan;XU Qian-nan(School of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China)
出处 《计算机工程与设计》 北大核心 2020年第7期1947-1951,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61601004、61472282)。
关键词 遥感图像配准 AKAZE提取 BRISK描述 GMS匹配 随机采样一致性算法 remote sensing image matching AKAZE extraction BRISK description GMS matching random sample consiste-ncy algorithm
  • 相关文献

参考文献11

二级参考文献114

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 2高广珠,李忠武,余理富,何智勇.归一化互相关系数在图像序列目标检测中的应用[J].计算机工程与科学,2005,27(3):38-40. 被引量:17
  • 3阮宗才,许冠明.基于AOS的线性种子扩散图像分割方法研究[J].微电子学与计算机,2006,23(12):89-90. 被引量:2
  • 4Alcantarillay PF, Bartoliy A, et al. KAZE features.Computer Vision - ECCV 2012.2012.
  • 5Weickert J, Ishikawa S, Imiya A. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision ,1999,10 (3): 237-252.
  • 6Weickert J, Romeny BMTH, Viergever MA. Efficient and reliable schemes for non-linear diffusion filtering. 1EEE Trans. on Image Processing, 1998, 7 (3): 398-410.
  • 7Perona P, Malik J. Scale-space and detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 1990, 12: 1651-1686.
  • 8Weickert J, Efficient image segmentation using partial differential equations and morphology. Pattern Recognition, 2001, 34 (9) :1813-1824.
  • 9Lindeberg T. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2): 77-116.
  • 10Brown M, Lowe D. Invariant features from interest point groups. British Machine Vision Conf. Cardiff, UK. 2002.

共引文献225

同被引文献52

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部