摘要
基于大数据分析指导销售策略,提高经济销售量是网络销售的核心问题之一.论文基于数据分析挖掘情感词,构建词向量矩阵;通过最小平方拟合动态分析产品评级变化趋势;然后通过互信息法构建评级模型,研究市场关注的商品属性及满意度关系;进而确定产品的设计特征与成功和失败的衡量标准,从而找到合适的销售策略.
Based on big data analysis to guide sales strategies,increasing economic sales is one of the core issues of online sales.The thesis mines emotion words based on data analysis and constructs a word vector matrix;dynamically analyzes the change trend of product ratings by least square fitting;then builds a rating model through mutual information method to study the product attributes and satisfaction relationships that the market focuses on,and then determines product design Features and measures of success and failure to find the right sales strategy.
作者
崔泽豪
罗养霞
刘卓文
董雨萌
CUI Ze-hao;LUO Yang-xia;LIU Zhuo-wen;DONG Yu-meng(School of Information,Xi'an University of Finance and Economics Xi′an Shaanxi 710100)
出处
《数字技术与应用》
2020年第6期219-220,共2页
Digital Technology & Application
基金
陕西省教育厅科研计划项目(No.18JK0318)。
关键词
在线销售
情感特征词
互信息度量
KNN分析算法
online sales
sentiment feature words
mutual information measurement
KNN analysis algorithm