期刊文献+

基于数据集特征的卷积网络代价函数优化方法

Convolution neural network cost function optimization method based on Dataset features
下载PDF
导出
摘要 近年来,为了减少卷积神经网络计算量和提高分类准确率,研究者们开发了各种各样的建模技术和优化方法.卷积神经网络中代价函数的作用是对比预测值和样本标签,评估预测准确程度.由于数据集中各类样本的分布也会一定程度上影响预测结果,提出一种基于数据集统计特征的代价函数优化方法,将数据集的统计特征以权重的形式叠加到交叉熵代价函数中.经过Mnist和Cifar数据集实验验证,表明该损失函数在卷积网络中收敛速度和准确率均有一定的优势. In recent years,in order to reduce the convolution neural network computation and improve classification accuracy,the researchers developed a variety of modeling techniques and optimization method.The function of loss function is to evaluate the accuracy of prediction by comparing the predicted value and the sample label.Because all kinds of distribution of the sample in the data set may affect the forecasting result,put forward an optimization method of the cost function based on the characteristics of the data sets,then the statistical characteristic of data sets is reflected into the loss function as weights.With Mnist and Cifar data experiment verification,the results show that this new loss function has some advantages in converging rate and accuracy.
作者 盛思远 赵洋洋 Sheng Siyuan;Zhao Yangyang(College of Science,Shenyang University of Chemical Technology,Liaoning Shenyang 110142;Department of Basic Education,Criminal Investigation Police University of China,Liaoning Shenyang 110854)
出处 《南方农机》 2020年第13期12-13,共2页
基金 中央高校基本科研业务费博士科研启动金项目(D2019018)。
关键词 卷积神经网络 代价函数 先验分布 Convolution neural network Cost function Prior distribution
  • 相关文献

参考文献3

二级参考文献22

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部