期刊文献+

小参数对流扩散方程在最优分层网格的一致收敛有限元计算

Uniformly convergent finite element computation on optimally graded meshes for the convection-diffusion equation with a small parameter
下载PDF
导出
摘要 面向小参数的奇异摄动对流扩散方程,构建分层网格自适应地刻画边界层对应的离散结点,应用有限元计算以期在特殊网格上得到优化结果.分层网格无需复杂计算,仅根据递推关系可形成随机剖分数的优化网格,实现更好地捕捉边界层.数值算例验证了方法的鲁棒性,获得了完全独立于小摄动参数、一致收敛的有限元高精度数值结果. As for a singularly perturbed convection-diffusion equation with a small parameter,a graded mesh is built adaptively to describe the discrete nodes of the boundary layers,and the finite element computation is applied to solve the optimal results on special meshes.The graded mesh is free of complicated operations,it can be realized from a recursive formulation to build the optimal mesh with random partition numbers,which is qualified to capture the boundary layers.The robustness of the method is shown through numerical experiments,the high precision numerical results of finite element are obtained,which are completely independent of small perturbation parameters and uniformly convergent.
作者 孙美玲 SUN Meiling(Department of Public Course,Nantong Vocational University,Nantong 226007,China)
出处 《高师理科学刊》 2020年第6期1-4,共4页 Journal of Science of Teachers'College and University
基金 国家自然科学基金面上项目(11771224) 南通职业大学自然科学研究项目(1512105)。
关键词 对流扩散方程 小参数 分层网格 有限元法 一致收敛 convection-diffusion equation small parameter graded mesh finite element method uniformly convergent
  • 相关文献

参考文献4

二级参考文献37

  • 1Hughes T J, Brooks A N. A Multidimensional Upwind Scheme With No Crosswind Diffusion[J]. Finite Element Methods for Convection dominated Flows: ed.By T. J. Hughes, ASME, 1979, 34: 19-35.
  • 2Ling T, Stynes M. The SDFEM on Shishkin meshes for linear convection-diffusion problems[J]. Numer. Math., 2001, 87: 457-484.
  • 3Stynes M, Tobiska L. Analysis of the Streamline-Diffusion Finite Element Method on a shishkin mesh for a Convection-Diffusion Problem with Exponential Layers[J]. J. Numer. Math., 2001, 9: 59-76.
  • 4Stynes M, Tobiska L. The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy[J]. SIAM. J. Numer. Anal., 2003, 41: 1620- 1642.
  • 5DurAn R G, Lombardi A L. Finite element approximation of convection diffusion problems using graded meshes[J]. Appl. Numer. Math., 2006, 56: 1314-1325.
  • 6Lint3 T. The necessity of Shishkin decomposition[J]. Apph Math. Lett., 2001, 14(7): 891-896.
  • 7Ciarlet P G. The finite element method for elliptic problems[M]. Amsterdam: North-Holland, 2002.
  • 8Linfi T. An upwind difference scheme on a novel Shishkin-type mesh for a linear convection - diffusion problem[J]. J. of comput. Appl. Math., 1999, 110(1): 93-104.
  • 9Roos H G, Stynes M and Tobisk L. Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems[M]. Berlin: Springer, 2008.
  • 10L. Chen and J. Xu, Stability and accuracy of adapted finite element methods for singularly perturbed problems, Numer. Math., 109 (2008), 167-191.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部