摘要
针对评论型长文本的情感倾向性问题,提出了一种融合情感规则与机器学习的分类方法.基于情感规则得出评论的情感得分,该方法将文本分解为一组子句,以词汇为基本颗粒进行分数计算,得出最佳位置权重系数.同时,不同类型句式共归纳出4类关联词与之对应.将所得权重系数与关联词得分相结合,总结出情感计算公式.然后将所得情感得分作为特征融合到机器学习分类器的输入矩阵中,构造最优情感分类器.实验所得最优分类器准确率为0.979,高于同类算法.
A classification method combining emotional rules and machine learning is proposed to solve the problem of emotional orientation of long critical texts.First of all,the emotional score of the comment is obtained based on the emotional rules,the method refines the text into a set of clauses,with vocabulary as the basic particle scores calculated,it is concluded that the best position weight coefficient.Meanwhile,there are four types of related words corresponding to different types of sentence patterns.Combining the weight coefficient with the score of related words,the formula of emotion calculation is summarized.Then,the obtained emotion score is integrated into the input matrix of machine learning classifier to construct the optimal emotion classifier.The accuracy of the optimal classifier is 0.979,higher than the similar algorithm.
作者
宛艳萍
孟竹
唐家明
谷佳真
张芳
WAN Yanping;MENG Zhu;TANG Jiaming;GU Jiazhen;ZHANG Fang(School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300401,China)
出处
《高师理科学刊》
2020年第6期31-35,共5页
Journal of Science of Teachers'College and University
基金
河北省高等学校科学技术研究重点项目(ZD2014051)
关键词
情感倾向性
情感规则
权重调优
关联词
特征融合
最优情感分类器
emotional tendency
emotional rules
weight tuning
relative term
feature fusion
optimal emotion classifier