摘要
针对GA算法存在易困于局部最优解的情况,提出一种改进的遗传算法(IGA)。IGA算法将黄金分割的局部搜索与遗传算法二者有机地结合,使算法有效地进行全局寻优。数值结果显示,对遗传算法的改进是有效的。IGA算法与标准GA算法相比具有很好的全局收敛性,能有效抑制未成熟收敛。
An improved genetic algorithm(IGA)is proposed to solve the problem that GA is easy to be trapped in the local optimal solution.IGA algorithm combines the local search of golden section and genetic algorithm organically,which makes the algorithm carry out global optimization effectively.The numerical results show that the improvement of genetic algorithm is effective.Compared with the standard GA algorithm,IGA algorithm has good global convergence and can effectively suppress the immature convergence.
作者
杜玉平
DU Yuping(Department of Mathematics and Computer,Shuozhou Normal College,Shuozhou,Shanxi,036000)
出处
《太原学院学报(自然科学版)》
2020年第2期83-86,共4页
Journal of TaiYuan University:Natural Science Edition
基金
山西省高校科技创新项目(201602106)
山西省教育科学规划课题(GH-19323)。
关键词
遗传算法
黄金分割
全局收敛性
Genetic Algorithms
golden ratio
global convergence