期刊文献+

应用于转化医学基础研究的临床数据整理流程设计

Design of the Clinical Data Arrangement Process Applied to the Basic Research of Translational Medicine
下载PDF
导出
摘要 临床数据的整理作为临床科研活动的重要组成部分,在转化医学基础研究的工作中起着至关重要的作用。高质量的临床数据是医学试验结果真实可信的有力保障。当前被广泛应用的传统的临床数据整理方法存在着以下几个弊端:信息多元异构,缺乏规范化数据;人工操作耗时长,效率低,错误多,质量评估难;数据清理任务复杂,处理难;人工设计实验表单,无法满足数据再利用的需求等。通过阐述临床数据整理工作的现状和问题,总结了对临床数据整理工作的基本需求,提出了相应的数据整理操作流程设计方案,试图为更加迅速、高效、便捷地获取高质量临床试验数据的技术方法提供思路,进而为转化医学基础研究提供数据支持。 As an important part of clinical scientific research activities,the clinical data arrangement plays an important role in the basic research work of translational medicine.The high-quality clinical data is a powerful guarantee for the authenticity of medical test results.At present,the traditional clinical data arrangement method widely used has the following disadvantages.The information is diverse and heterogeneous,there is a lack of standardized data;the manual operation is time-consuming and low-efficiency and has many errors,it is difficult to evaluate the quality;the data cleaning task is complex and difficult;the manually designed experimental forms cannot meet the needs of data reuse,etc.By introducing the current situation and problems of clinical data arrangement work,this paper summarizes the basic needs of clinical data arrangement work,proposes the corresponding operation flow design scheme of data arrangement,and tries to provide ideas for the technical method for more rapid,efficient and convenient access to high-quality clinical trial data,thus providing data support for the basic research of transformational medicine.
作者 张弛 ZHANG Chi(Biomedical Information Center,Beijing You'an Hospital,Capital Medical University,Beijing Key Laboratory of Biomarkers for Infection-related Diseases,Beijing 100069,P.R.C.)
出处 《中国数字医学》 2020年第6期35-38,共4页 China Digital Medicine
关键词 数据整理 结构化数据 数据质量评估 数据清洗 临床数据 data arrangement structured data data quality assessment data cleaning clinical data
  • 相关文献

参考文献4

二级参考文献89

  • 1王媛媛,丁毅,孙媛媛,赵志丹.数据可视化技术的实现方法研究[J].现代电子技术,2007,30(4):71-74. 被引量:34
  • 2李凌燕.OLAP系统中多维数据可视化的实现[J].现代电子技术,2007,30(10):142-145. 被引量:2
  • 3工业和信息化部.《物联网“十二五”发展规划》发布[EB/OL].http://WWW.miit.gov.cn/n11293472/n11293832/n12771663/14473808.html.
  • 4涂子沛.大数据[M].桂林:广西师范大学出版社.2012.
  • 5维基百科.云计算[EB/OL].2012-10-31http://zh.wikipedia.org/wiki/云计算.
  • 6维克托·迈尔-舍恩伯格,肯尼思·库克耶.大数据时代[M].杭州:浙江人民出版社,2013:5-25.
  • 7高勇.啤酒与尿布[M].北京:清华大学出版社,2008.
  • 8NAISBITT J. Megatrends: Ten new directions transfor- ming our iive[M]. New York: Warner Books, 1982: 40 - 42.
  • 9阿尔文·托勒夫.第三次浪潮[M].黄明坚译.北京:中信出版社,2006:19-25.
  • 10GOLDSTON D. Big data: data wrangling [J/OL]. Na ture, 2008, 455: 15. [2013-07-24]. http://www, na ture. com/nature/index, html.

共引文献498

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部