摘要
提出一种基于音视频匹配层自适应加权融合的身份识别方法。在不同程度的噪声情况下,图像与声音的识别率会随噪声的增强而降低,凭借单个生物模态的识别,难以达到很好的预测结果;而且两种模态融合时的权值不同,融合系统的稳定性效果也不同。采用双模态的自适应加权融合不仅可以有效地弥补不同生物模态识别之间的优缺点,而且可以自适应选择最优的权值进行决策。实验表明,该方法的理论推测成立,比单模态的身份识别具有更高的识别率与鲁棒性。
This paper proposes an adaptive weighted fusion based on audio-video matching layer.In the case of different degree of noise,the recognition degree of image and sound will decrease with the increase of noise.And the weight of the two modes is different,the stability effect of the fusion system is also different.The adaptive weighted fusion of two modes can not only make up the advantages and disadvantages of different biological modes,but also choose the optimal weight to make the decision.Experiments show that the proposed method is feasible and has higher recognition rate and robustness than single mode identification.
作者
李傲梅
胡正豪
周川川
Li Aomei;Hu Zhenghao;Zhou Chuanchuan(Department of Information and Communication Engineering,Army and Artillery Air Defense Force College,Hefei 230031,China)
出处
《电子技术应用》
2020年第7期57-59,共3页
Application of Electronic Technique
关键词
音视频融合
匹配层
自适应加权
身份识别
鲁棒性
audio and video fusion
matching layer
adaptive weighting
identification
robustness