期刊文献+

基于深度学习的GSM接收机模型 被引量:1

The Model of GSM System Based on Deep Learning
下载PDF
导出
摘要 在传统GSM接收机原理的基础上引入深度学习的概念,给出了基于深度学习的GSM系统的模型,减小系统信号传输的误码率,以达到优化通信系统的结构和性能的目的.最后通过搭建MATLAB和PYTHON平台对系统进行仿真实验,从仿真结果推断引入深度学习检测算法后对GSM系统误码率的影响. The concept of deep learning was introduced based on the principle of traditional GSM receiver,and the model of GSM system based on deep learning was given to reduce the bit error rate of system signal transmission,so as to optimize the structure and performance of communication system.Finally,by building MATLAB and PYTHON platform to simulate the bit error rate of the system,the influence of deep learning detection algorithm on the bit error rate of GSM system was inferred from the simulation results.
作者 谢文武 张皓凯 江涵思 李亚兰 XIE Wenwu;ZHANG Haokai;JIANG Hansi;LI Yalan(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China;School of Electronic Information and Electrical Engineering,Xiangnan University,Chenzhou 423000,China)
出处 《湖南理工学院学报(自然科学版)》 CAS 2020年第2期17-22,共6页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 湖南省大学生创新创业训练计划项目(S201910543040)。
关键词 GSM 接收机 误码率 深度神经网络 深度学习 GSM receiver bit error rate deep neural network deep learning
  • 相关文献

参考文献5

二级参考文献42

  • 1郭文彬,杨鸿文,杨大成.编码GMSK的一种新的迭代检测方法[J].北京邮电大学学报,2004,27(3):58-62. 被引量:8
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献666

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部