期刊文献+

静止液态甲烷饱和单液滴蒸发量与蒸发时间

Evaporation Amount and Time of Saturated Single Droplet of Stationary Liquid Methane
下载PDF
导出
摘要 为研究LNG液舱预冷的过程和特性,利用计算机编程技术,建立静止饱和单液滴在同种蒸气中蒸发模型,并对液态甲烷液滴在不同温差下蒸发数据进行研究,得出结论如下:液滴表面蒸气速度随液滴半径的减小而增大,随环境与液滴中心的温差的增大而增大,液滴蒸发速率随液滴半径和温差增大而增大。初始半径越大,温差对完全蒸发时间影响越大,当温差超过100 K时,温差的影响减弱。初始半径对相对蒸发率和绝对蒸发量的影响不同,初始半径越小,绝对蒸发量越小,相对蒸发率越大。 In order to study the process and characteristics of pre-cooling LNG tank,a model of evaporation of stationary saturated single droplet in the same kind of vapor was built by computer programming technology,and the evaporation data of liquid methane droplets under different temperature differences were studied.The conclusions are as follows:The vapor velocity of the droplet surface increases with the decrease of the droplet radius,and increases with the increase of the temperature difference between the environment and the droplet center.The droplet evaporation rate increases with the increase of the droplet radius and the temperature difference.The larger the initial radius,the more greater the influence of temperature difference on the complete evaporation time.When the temperature difference exceeds 100 K,the influence of the temperature difference is weakened.The initial radius has different effects on the relative evaporation rate and the absolute evaporation amount.The smaller the initial radius,the smaller the absolute evaporation amount and the larger the relative evaporation rate.
作者 邓佳佳 许健 卢金树 DENG Jiajia;XU Jian;LU Jinshu
出处 《煤气与热力》 2020年第7期I0006-I0011,I0044,I0045,共8页 Gas & Heat
基金 国家青年基金项目(11602222) 浙江省基础公益研究计划项目(LY18E090009) 浙江省舟山市科技局项目(2016C41021、2016C12010) 浙江海洋大学科研启动基金(Q1612)。
关键词 饱和液滴蒸发 传热传质 蒸发速率 evaporation of saturated droplets heat and mass transfer evaporation rate
  • 相关文献

参考文献4

二级参考文献78

  • 1丁继贤,孙凤贤,姜任秋.对流条件下环境压力对液滴蒸发的影响研究[J].哈尔滨工程大学学报,2007,28(10):1104-1108. 被引量:21
  • 2Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22: 673.
  • 3Teichler A, Perelaerabc J, Schubert U S. J. Mater. Chem. C 2013, 1: 1910.
  • 4Tian D L, Song Y L, Jiang L. Chem. Soc. Rev. , 2013, 42 5184.
  • 5Wang J X, WangL B, SongY L, JiangL. J. Mater. Chem. C, 2013, 1 : 6048.
  • 6Li J T, Ye F, Vaziri S, Muhammed M, l,emme M (], 0stling M. Adv. Mater. , 2013, 25: 3985.
  • 7Minemawari H, Yamada T, Matsui H, Tsutsumi J, Simon H S0 Chiba R, Kumai R, HasegawaT. Nature, 2011, 475: 364.
  • 8Sirringhaus H, Kawase T, Friend R H, Shimoda T, lnbasckaran M, Wu W, WooE P. Science, 2000, 290: 2123.
  • 9Ito T, Okazaki S. Nature, 2000, 406: 1027.
  • 10Geissler M, Xia Y N. Adv. Mater. , 2004, 16: 1249.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部