期刊文献+

某类沿曲面的强奇异积分算子在调幅函数空间上的有界性

Boundedness of Certain Hyper Singular Integral Operator Along Surface on Modulation Space
下载PDF
导出
摘要 假设β1>α1>0,β2>α2>0。文章对如下定义的强奇异积分算子Hα,βf(x,y,z)=∫Q^2f(x-t,y-s,z-γ(t)h(s))e^-2πit■/t^1+α1s^1+α2dtds进行了讨论,其中Q^2=[0,1]^2,γ(t),h(s)满足某些适当的条件。利用振荡积分估计,得到当β1>3α1>0且β2>3α2>0时,算子Hα,β在调幅函数空间M^p,q(R^3)上有界,这里1≤p≤∞,0<q≤∞。 Supposeβ1>α1>0,β2>α2>0.In this paper,the hyper singular integral operator defined byHα,βf(x,y,z)=∫Q^2f(x-t,y-s,z-γ(t)h(s))e^-2πit■/t^1+α1s^1+α2dtds,where Q^2=[0,1]^2andγ(t),h(s)satisfy the appropriate conditions.With the oscillatory integral estimation,it is obtained that ifβ1>3α1>0 andβ2>3α2>0,then the operatoris Hα,βbounded on M^p,q(R^3)for 1≤p≤∞,0<q≤∞.
作者 刘慧慧 唐剑 LIU Huihui;TANG Jan(College of Mathematics and Statistics,Fuyang Normal University,Fuyang 236037,China)
出处 《南通大学学报(自然科学版)》 CAS 2020年第2期81-85,94,共6页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11801081)。
关键词 奇异积分算子 调幅空间 Wiener共合空间 有界性 singular integral operator modulation space Wiener amalgam space boundedness
  • 相关文献

参考文献4

二级参考文献27

  • 1FAN DaShan,WU HuoXiong.Certain oscillatory integrals on unit square and their applications[J].Science China Mathematics,2008,51(10):1895-1903. 被引量:6
  • 2Benyi A, Grafakos L, Grochenig K, Okoudjou K A. A class of Fourier multipliers for modulation spaces. Appl Comput Harmon Anal, 2005, 19:131-139.
  • 3Benyi A, Grochenig K, Okoudjou K A, Rogers L G. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246:366-384.
  • 4Benyi A, Okoudjou K A. Local well-posedness of nonlinear dispersive equations on modulation spaces. Available at arXiv:0704.0833vl, 2007.
  • 5Chandarana S. L^P-bounds for hyper-singular integral operators along curves. Pacific J Math, 1996, 175: 389 -416.
  • 6Cordero E. Nicola F. Some new Strichartz estimates for the Schrodinger equation. Preprint, Available at arXiv:0707.4584, 2007.
  • 7Feichtinger H G. Banach spaces of distributions of Wiener's type and interpolation//Butzer P, Sz Nagy B, Gorlich E, eds. Proc Conf Oberwolfach, Functional Analysis and Approximation. Basel, Boston, Stuuugart: Birkhauser-Verlag, 1981:153-165.
  • 8Feichtinger H G. Modulation Spaces on Locally Compact Abelian Groups. Technical Report. Vienna: University of Vienna, 1983.
  • 9Grochenig K. Foundations of Time-Frequency Analysis. Boston: Birkhauser, 2001.
  • 10Kobayashi M. Dual of modulation spaces. J Funct Spaces Appl, 2007, 5:1-8.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部