期刊文献+

L1正则化方法及其在经济增长中的应用 被引量:1

L1 Regularization Method and Its Application in Economic Growth Research
下载PDF
导出
摘要 首先基于对L1正则化方法的介绍,将L1正则化应用到经济高质量增长模型中,用Lasso回归中的最小角回归方法筛选出对经济高质量增长影响较大的因素,并把影响较小的因素予以剔除。然后应用logistic回归和坐标下降法,对拥有较多维度的自变量进行筛选,以得到影响结果的主要维度,并对其他维度进行剔除。最后发现,劳动力受教育水平、产业结构对经济高质量增长的影响较大。 Based on the review of L1 regularization method, L1 regularization was applied to a high-quality economic growth model. The least-angle regression method in Lasso regression was used to screen out the factors, who had a greater impact on highquality economic growth, and eliminate the factors with less influence. Then we used logistic regression and coordinate descent method to screen independent variables with more dimensions, so as to obtain the main dimensions affecting the results and eliminate other dimensions. We finally found that, the education level of labor force and industrial structure both had greater impact on high-quality economic growth.
作者 管勇攀 GUAN Yong-pan(School of Economy and Management,Hebei University of Technology,Tianjin 300401,China)
出处 《统计学报》 2020年第3期67-76,共10页 Journal of Statistics
基金 河北省社会科学基金项目(HB18YJ018)。
关键词 L1正则化 Lasso回归 LOGISTIC回归 坐标下降法 经济增长 L1 regularization Lasso regression logistic regression coordinate descent method economic growth
  • 相关文献

参考文献12

二级参考文献81

共引文献214

同被引文献30

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部