期刊文献+

基于Spark的并行图聚类算法研究 被引量:3

Study of Parallelized Graph Clustering Algorithm Based on Spark
下载PDF
导出
摘要 对并行图聚类算法进行了研究。基于Spark提出了一个新的并行图聚类算法;由于Spark中的top操作需要耗费大量的内存,提出了一个新算法来替代top操作,有效减少了所消耗的内存;通过对自底向上的层次聚类算法进行改进提高了聚类的速度;基于图数据的特征提出了一种图数据过滤的方法来减少算法运行的时间以及所占用的空间并对其有效性进行了说明。仿真结果表明,运行效果优于进行比较的其他并行化图聚类算法。 The parallelized graph clustering algorithm is researched.A new parallelized graph clustering algorithm is proposed based on Spark.As the top operation of Spark occupies a lot of memory space,a new algorithm which is used to substitute the top operation is proposed to reduce the memory consumption.By improving bottom up hierarchical clustering algorithm,the speed of the proposed algorithm is improved.A new data filtering method based on the feature of graph data is proposed.By the method,the running time and memory space comsuption is reduced greatly.The reason of the high efficiency of this filtering method is explained.Simulation result indicates that the proposed algorithm is better than other parallelized graph clustering algorithms.
作者 刘东江 黎建辉 Liu Dongjiang;Li Jianhui(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100190,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第6期1038-1050,共13页 Journal of System Simulation
基金 国家重点研发计划(2016YFB1000600) 中国科学院战略性先导科技专项(XDA06010307)。
关键词 图聚类 图数据 SPARK 算法 并行化 graph clustering graph data Spark algorithm parallelize
  • 相关文献

参考文献5

二级参考文献83

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2杨博,刘大有.Force-Based Incremental Algorithm for Mining Community Structure in Dynamic Network[J].Journal of Computer Science & Technology,2006,21(3):393-400. 被引量:8
  • 3PALLA G, DERENYI I, FARKAS I, et al. Uncovering the overlap- ping community structure of complex networks in nature and society [ ]]. Nature, 2005,435(7043) : 814 - 818.
  • 4AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal muhiscale complexity in networks [ J]. Nature, 2010, 466(7307): 761 -764.
  • 5LANCICHINETTI A, FORTUNATO S, KERTESZ J. Detecting the overlapping and hierarchical community structure in complex net- works [ J]. New Journal of Physics, 2009, 11 (3) : 033015.
  • 6RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time al- gorithm to detect community structures in large-scale networks [ EB/ OL]. [ 2015- 01- 08 ]. http://wenku, baidu, corn/view/ d6c2 d36ba98271 fe910et9 c9. html.
  • 7JIN H, WANG S, LI C. Community detection in complex networks by density-based clustering [ J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(19) : 4606 -4618.
  • 8XIA Z, BU Z. Community detection based on a semantic network [ J]. Knewledge-Based Systems, 2012, 26:30 - 39.
  • 9BARBIERI N, BONCH F, MANCO G. Cascade-based community de- tection [ C]// Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:33 -42.
  • 10DEV H, ALl M E, HASHEM T. User interaction based community detection in online social networks [ M]// BHOWMICK S S, DYRESON C, JENSEN C S, et al. Database Systems for Advanced Applications, LNCS 8422. Bedim Springer, 2014:296-310.

共引文献122

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部