期刊文献+

Learning Causal Effect Using Machine Learning with Application to China's Typhoon

原文传递
导出
摘要 Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data.Most of the matching literatures involve the estimating of propensity score with parametric model,which heavily depends on the model specification.In this paper,we employ machine learning and matching techniques to learn the average causal effect.By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios,we find that the ensemble methods,especially generalized random forests,perform favorably with others.We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第3期702-713,共12页 应用数学学报(英文版)
基金 supported by the National Key Research and Development Program of China Grant 2017YFA0604903 National Natural Science Foundation of China Grant(Nos.11671338,11971064)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部