期刊文献+

关于网约车订单分配策略的综述 被引量:6

A survey of order dispatch policy based on online ride-hailing services
下载PDF
导出
摘要 网约车在人们的日常出行生活中扮演着非常重要的角色,随着时代的发展,越来越多的人习惯于利用手机通过出行平台打车,但有时存在乘客的请求长时间得不到满足、司机长距离空载等现象,这不仅严重地影响了乘客和司机的体验感,还降低了人们的出行效率。如何更好地匹配乘客请求和空载司机需求,一直是出行平台关注和研究的重点问题。对网约车订单分配策略的研究,有助于减少乘客等待时间,提高司机收益,减少司机空载距离,提高资源利用率。首先简述了从乘客发起打车请求到请求订单被响应的完整流程;其次,详细地介绍了在不同派单模式下的订单分配策略;最后,全面地列举了衡量订单分配策略的评估指标。 Online ride-hailing services play an extremely important role in our daily travel life.With the development of the times,more and more people are accustomed to using mobile phones to take taxis through network platforms,but sometimes passenger requests are not met for a long time,and drivers are unloaded for a long distance,which not only seriously affects the experience of passengers and dri-vers,but also reduces people's travel efficiency.How to better match passenger requests and the needs of no-load drivers has always been a key research focus of the on-demand ride-hailing platforms.The study of online ride-hailing order dispatch strategy will help reduce passenger waiting time,increase driver revenue,reduce the no-load distance of drivers,and improve resource utilization.This survey firstly describes the entire process from the passenger’s initiating a taxi request to time the order is responded to.Secondly,it introduces the order allocation strategy under different dispatch modes in detail.Finally,it comprehensively lists the evaluation metrics for order dispatch strategy.
作者 郑小红 龙军 蔡志平 ZHENG Xiao-hong;LONG Jun;CAI Zhi-ping(School of Computer,National University of Defense Technology,Changsha 410073,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第7期1267-1275,共9页 Computer Engineering & Science
基金 国家自然科学基金(61105050)。
关键词 网约车 订单分配策略 乘客请求 出行平台 online ride-hailing services order dispatch strategy passenger request on-demand ride-hailing platform
  • 相关文献

参考文献2

二级参考文献77

  • 1郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30.
  • 2Zheng Y, Capra L, Wolfson O, et al. Urban Com- puting: Concepts, Methodologies, and Applications [J]. ACM Transactionson Intelligent Systems and Technology, 2014,3 (5), DOI: 10. 1145/1290002. 129O0O3.
  • 3Zheng Y, Liu Y, Yuan J, et al. Urban Computing with Taxicabs[C]. UbiComp,Beijing, 2011.
  • 4Yuan J, Zheng Y, Xie X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs[C]. KDD, Beijing,2012.
  • 5Wang Y, Zheng Y, Xue Y. Travel Time Estimation of a Path Using Sparse Trajectories[C]. KDD, New York, 2014.
  • 6Yuan J, Zheng Y, Zhang C, et al. T-Drive: Driving Directions Based on Taxi Trajectories[C]. SIGSPA- TIAL GIS,San Jose, California, 2010.
  • 7Yuan J, Zheng Y, Xie X, et al. Driving with Knowledge from the Physical World[C]. KDD,San Diego, California, 2011.
  • 8Yuan J, Zheng Y, Xie X, et al. T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence[J].IEEE Transactions on Knowledge and Data Engineering, 2013,25 ( 1 ) : 220 -232.
  • 9Yuan J, Zheng Y, Zhang I., et al. Where to Find My Next Passenger? [C]. UbiComp,Beijing ,2011.
  • 10Yuan J, Zheng Y, Zhang L, et al. T-Finder: A Recommender System for Finding Passengers and Vacant Taxis[J]. IEEE Transactions on Knowl- edge and Data Engineering , 2013, 25 ( lO ) : 2 390- 2 403.

共引文献110

同被引文献62

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部