期刊文献+

一种基于关联规则的MLKNN多标签分类算法 被引量:9

A MLKNN multi-label classification algorithm based on association rules
下载PDF
导出
摘要 针对MLKNN算法仅对独立标签进行处理,忽略现实世界中标签之间相关性这一问题,提出了一种基于关联规则的MLKNN多标签分类算法(FP-MLKNN)。该算法采用关联规则算法挖掘标签之间的高阶相关性,并用标签之间的关联规则改进MLKNN算法,以达到提升分类性能的目的。首先,使用MLKNN算法求样本的特征置信度;采用关联规则算法挖掘生成一系列强关联规则,进而将2种算法进行融合来构造多标签分类器,对新标签进行预测;在此基础上,将本文提出的算法与MLKNN、AdaBoostMH和BPMLL这3种算法进行实验对比。实验结果表明,本文所提算法在yeast、emotions和enron数据集上的分类性能均优于这3种算法,具有较好的分类效果。 Aiming at the problem that the MLKNN algorithm ignores the correlation between labels in the real world when dealing with independent labels,this paper proposes an MLKNN multi-label classification algorithm(FP-MLKNN)based on association rules.The algorithm uses association rules to mine high-order correlations between labels,and applies the association rules between labels to the MLKNN algorithm for improvement to achieve the purpose of improving the classification performance.Firstly,the MLKNN algorithm is used to obtain the characteristic confidence of the sample.Secondly,the association rule algorithm is used to mine and generate a series of strong association rules.Thirdly,the two algorithms are fused to construct a multi-label classifier to predict new labels.Experimental results show that the proposed algorithm has better classification performance than MLKNN,AdaBoostMH and BPMLL algorithms on yeast,emotions,and enron datasets,achieving a good classification effect.
作者 杨岚雁 靳敏 张迎春 张珣 YANG Lan-yan;JIN Min;ZHANG Ying-chun;ZHANG Xun(School of computer and information engineering,Beijing Technology and Business University,Beijing 100048;Information Network Center,Beijing Technology and Business University,Beijing 100048,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第7期1309-1317,共9页 Computer Engineering & Science
基金 北京市属高校高水平教师队伍建设支持计划(CIT&TCD201904037) 中国博士后科学基金(2017M620885)。
关键词 多标签分类 MLKNN 关联规则 高阶相关性 multi-label classification MLKNN association rules high order correlation
  • 相关文献

参考文献5

二级参考文献78

  • 1Schapire R E, Singer Y. BoosTcxter: A boostnlg bsed syslem for text categorizaion[J]. Machine Lcarning . 39(2/3): 135- 168.
  • 2McCallum A. Muhi-lahcl lext classification with a micture model trained by EM[C] //Proc of *he Working Nolcs of 11/ AAAI'99 Workshop on Text I.earning. Menlo Park, CA: AAAI Press, 1999.
  • 3Elissecff A, Weston J. A kcrtxel method for multi -labeclledclassification [C] //Advances in Neural Informalion Processing Systcms 14. Cambridge, MA: M1T Press, 2002: 681 -687.
  • 4QiGJ, HuaX S, Rui Y, et al. Corrclaativcmulti label vidco annotation [C] //Proc of the 15th ACM Int Conf on Muhimedia. New York: ACM, 2007:17- 26.
  • 5Aha D W. Specied A1 review issoe on lazy learning [J ]. Artificial Intelligcnce Review, 1997. 11(1/2/3/4/5): 7 -10.
  • 6Zhang M L,, Zhou Z H. ML-hNN: A lazy lcarning approach to multi label learning [J]. Paltern Recognition, 2007. 10 (7): 2038 -2048.
  • 7Freund Y, Sc:hapire R E. A dccision theoretic gcncralization of on-linc learning and an applocation to boosting[G]//Lecture Notcs in Computer Scicnce 904.Bcrlin:Springer.1995:23-37.
  • 8Dempstcr A P, 1.aird N M, Rubin D B+ Maxitnuntlikclihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistics Socicty B, 1977, 39(1): 1-38.
  • 9Ueda N, Saito K. Parametric mixturc models for multi label text [C] //Advances in Neural Information Processing Systems 15. Cambridge, MA= MITPress, 2003:721-728.
  • 10Dumais S T, Platt J, Heckerman D, et al. Inductive learning algorithm and representation for text categorization [C]// Proc of the 7th ACM Int Conf on Information and Knowledge Management. New York: ACM, 1998= 148-155.

共引文献55

同被引文献95

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部