摘要
针对自然对流问题,提出了一种有限元方法的基于恢复型的后验误差估计子,利用恢复技术建立的误差估计子可以对网格进行加密,从而提高计算效率.与传统的有限元方法相比,该方法节省了大量的计算资源.最后,通过数值实验验证了该方法的有效性和可靠性.
In this paper,recovery-based a posteriori error estimator for a finite element pair for the natural convection problem is proposed.The error estimator established by the recovery technique can be used to encrypt the grid and improve the efficiency.Compared with the common finite element method,the new method can save many computational resources.Finally,some numerical experiments are conducted to verify the effectiveness and the reliability of our proposed method.
作者
方季琳
黄鹏展
张秋雨
FANG Jilin;HUANG Pengzhan;ZHANG Qiuyu(College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China;School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第4期516-521,共6页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(11861067)。
关键词
自然对流问题
自适应方法
有限元方法
恢复型误差估计子
natural convection problem
adaptive method
finite element method
recovery-type error estimator