期刊文献+

噪声下相互依存网络的自适应H∞异质同步 被引量:3

Adaptive H∞Heterogeneous Synchronization for Interdependent Networks With Noise
下载PDF
导出
摘要 针对具有噪声的相互依存复杂动力网络,本文研究了它的局部自适应H∞异质同步问题.该网络由两个具有“一对一”相互依赖关系的子网构成,子网内部耦合和子网间的耦合均含有未知但有界的非线性函数.基于李雅普诺夫稳定性理论、线性矩阵不等式(Linear matrix inequality,LMI)技术和自适应以及H1控制方法,本文提出了使得相互依存网络在外部噪声的干扰下,两个子网各自达到一致的充分条件.这些条件不仅可以保证受扰动的网络获得鲁棒渐近同步而且可以让网络达到一个给定的鲁棒H∞水平.最后的数值模拟验证了提出的方法的有效性以及可行性. In this paper,local adaptive H_∞ heterogeneous synchronization is investigated for interdependent networks with noise.The network considered consists of two sub-network,which are one-by-one inter-coupled.The unknown but bounded nonlinear functions exist both in the intra-coupling and inter-coupling between the two sub-networks.Based on the Lyapunov stability theory,linear matrix inequality(LMI),and adaptive H_∞ control technique,the sufficient conditions are established to lead the sub-networks of the interdependent networks with noise to respective heterogeneous synchronization,which guarantee not only robust asymptotical synchronization for networks with noise but also a prescribed robust H_∞ performance level.Finally,numerical simulations prove the effectiveness and feasibility of the method.
作者 郭天姣 涂俐兰 GUO Tian-Jiao;TU Li-Lan(Hubei Province Key Laboratory of Systems Science in Met-allurgical Process,Wuhan University of Science and Technology,Wuhan 430065;College of Science,Wuhan University of Sci-ence and Technology,Wuhan 430065)
出处 《自动化学报》 EI CSCD 北大核心 2020年第6期1229-1239,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61473338)资助。
关键词 相互依存网络 自适应H∞ 控制 异质同步 噪声 线性矩阵不等式 Interdependent networks adaptive H1 control heterogeneous synchronization noise linear matrix inequal-ity(LMI)
  • 相关文献

参考文献4

二级参考文献104

  • 1魏荣,王行愚.连续时间混沌系统的自适应H_∞同步方法[J].物理学报,2004,53(10):3298-3302. 被引量:23
  • 2汪小帆,李翔,陈关荣.2012网络科学导论(北京:高等教育出版社),第161页.
  • 3Erdos P, Renyi A. On the evolution of random graphs. Publi- cation of the Mathematical Institute of Hungarian Academy of Sciences, 1960, 5:17-61.
  • 4Watts D J, Strogatz S H. Collective dynamics of "small- world" networks. Nature, 1998, 393(6684): 440-442.
  • 5Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512.
  • 6Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physics Letters A, 1999, 263(4-6): 341-346.
  • 7Newman M E J. Networks: An Introduction. Oxford: Ox- ford University Press, 2010.
  • 8Chen G R, Wang X F, Li X. Introduction to Complex Net- works: Models, Structures and Dynamics. Beijing: High Ed- ucation Press, 2012.
  • 9Wang X F, Chen G R. Pinning control of scale-free dynam- ical networks. Physica A: Statistical Mechanics arid Its Ap- plications, 2002, 310(3-4): 521-531.
  • 10Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2004, 51(10): 2074-2086.

共引文献70

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部