期刊文献+

基于股票价格的股票差异性与相关性获取方法研究 被引量:1

Research on Difference of Stock and Mining Method for Correlation of Stock Based on Stock Price
下载PDF
导出
摘要 为获取股票市场中正常交易的相关性股票集,本文基于股票价格序列的差异性,定义了股票价格序列的距离。通过对股票价格序列距离的泛化,实现了股票差异性的定量计算。为基于可视化方法分析市场中正常交易股票的相关性,采用多尺度分析方法建立了股票价格序列的k维欧式空间。进一步,本文在讨论了股票股价相关的基础上定义了股票的β相关,并给出了获取β(α)相关股票的方法。实验表明,本文提出的方法可以用于基于股票价格序列的相关性股票的有效获取与可视化。 In order to get the relevant stock set for stocks which are normally traded in the stock market,the distance of the stock price sequence based on the stock price sequence is defined in the paper. With the generalization for the distance of the stock price sequence,the quantitative calculation of the stock difference is realized. To analyze the correlation of normal trading stocks in the market based on visualization analysis methods,multi-scale analysis method is used to establish the k-dimensional Euclidean space of stock price sequence. Furthermore,this paper also defines the β correlation of the stock based on the discussion about correlation for stock price sequence,and the method of β(α) related stock mining is given too. Experiments show that proposed methods can be used to obtain and visualize the relevant stock based on the stock price sequence.
作者 程红梅 CHENG Hongmei(School of Economic and Management,Anhui Jianzhu University,Hefei 230022,China)Abstract:)
出处 《安徽建筑大学学报》 2020年第2期26-31,共6页 Journal of Anhui Jianzhu University
基金 国家重点研发计划项目(2017YFC0704100) 国家自然科学基金(11471304)。
关键词 股票市场 距离 多尺度分析方法 相关 stock market distance multidimensional scaling correlation
  • 相关文献

参考文献4

二级参考文献44

  • 1王燕辉,王凯涛.股市交易量与收益率的关联分析[J].系统工程,2005,23(1):59-62. 被引量:15
  • 2周观君,王瑞泽.沪深股市量价因果关系实证研究[J].统计与信息论坛,2005,20(6):46-49. 被引量:1
  • 3钱争鸣,郭鹏辉.上海证券交易市场量价关系的分位回归分析[J].数量经济技术经济研究,2007,24(10):141-150. 被引量:22
  • 4Wang J J, Wang J Z, Zhang Z G, Guo S P. Stock Index Fore- casting Based on a Hybrid model [ J ]. Omega,2012,40 (6) : 758 - 766.
  • 5Zhang G P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[ J]. Neurocomputing, 2003, 50: 159 - 175.
  • 6Khashei M, Bijari M. A Novel Hybridization of Artificial Neural Networks and ARIMA Models for Time Series Fore- casting[J]. Applied Soft Computing,2011,11 (2) :2664 - 2675.
  • 7Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York : Springer Verlag Press, 1995.
  • 8Tay F E H, Cao L J. Application of Support Vector Ma- chines in Financial Time Series Forecasting [ J ]. Omega, 2001, (29) :309 -317.
  • 9Huang W, Nakamori Y, Wang S Y. Forecasting Stock Mar- ket Movement Direction with Support Vector Machine [J]. Computers & Operations Research, 2005, ( 32 ) : 2513 - 2522.
  • 10Chatfield C. What is the ' Best' Method of Forecasting [ J]. Journal of Applied Statistics, 1998, ( 15 ) : 19 - 39.

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部