期刊文献+

基于混合卷积神经网络的花卉种类识别研究 被引量:1

Flower Species Recognition Based on Hybrid Convolution Neural Network
下载PDF
导出
摘要 花卉种类识别属于植物分类的重要分支之一,有着很高的研究和应用价值。但是,目前的花卉识别方法普遍存在着时间长、准确率较低的问题。针对这些问题,本文以花卉图像作为研究对象,首先选择Gabor滤波器对花卉图像进行纹理分析,然后采用改进后的LeNet-5和GoogLeNet神经网络模型对处理后的花卉图片分别进行特征提取,并对得到的两个不同的特征向量进行特征融合,以此进行花卉种类的识别和模型训练。为了验证模型的优劣,使用Tensorflow框架对实验进行仿真,基于混合卷积神经网络无论在泛化能力还是拟合能力上都有显著的提高。 In order to avoid time consuming and low accuracy of the present flower recognition method,this paper presents a method based on hybrid convolution neural network.It first chooses Gabor filter to analyze the flower image texture,and then uses the improved LeNet-5 and GoogLeNet neural network model to extract the feature of the processed flower pictures respectively.Secondly,two obtained different eigenvectors are fused to achieve the process of recognition of flower species and the model training.Finally,the Tensorflow framework is adopted to simulate the experiments.The results show that both generalization ability and fitting ability have been significantly improved.
作者 李倩倩 张恩宝 孙敏 余大为 李旸 LI Qianqian;ZHANG Enbao;SUN Min;YU Dawei;LI Yang(Anhui Agriculture University, Hefei 230036 China)
出处 《洛阳理工学院学报(自然科学版)》 2020年第2期77-82,93,共7页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 深度学习 LeNet-5模型 GoogLeNet模型 算法优化 花卉识别 deep learning leNet-5 GoogLeNet:algorithm optimization identification of flower species
  • 相关文献

参考文献8

二级参考文献76

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2高晓阳,Paul Heinemann,Joseph Irudayaraj.苹果擦伤拉曼光谱无损检测虚拟系统研究[J].农业工程学报,2005,21(3):130-133. 被引量:14
  • 3杜娟,李文锋.基于金字塔连接算法的彩色图像分割[J].武汉理工大学学报,2006,28(1):112-114. 被引量:10
  • 4SAITOH T, AOKI K, KANEKO T. Automatic recognition of blooming flowers[J]. Pattern Recognition, 2004,1:27-30.
  • 5NILSBACK M E, ZISSERMAN A. Delving deeper into the whorl of flower segmentation[ J]. Image and Vision Computing, 2010, 28(6) :1049-1062.
  • 6NILSBACK M E, ZISSERMAN A. A visual vocabulary for flower classification[ C/OL ] //Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington : IEEE Computer Society, 2006 : 1447-1454. [ 2011- 03-01 ]. http: //www, robots, ox. ac. uk/- men/papers/nilsback_ cvpr06, pdf.
  • 7HSU T H, LEE C H, CHEN L H. An interactive flower image recognition system [ J ]. Multimedia Tools and Applications,2010, 53(1) :53-73.
  • 8MIKOLAJCZYK K, SCHMID C. Comparison of affine-invariant local detectors and descriptors [ C/OL ] // Proceedings of 12th European Signal Processing Conference, Vienna: 2004: 1729- 1732. [ 2011-03-03 ]. http: //www. eurasip, org/Proceedings/ Eusipco/Eusipco2004/defcvent/papers/cr1767. pdf.
  • 9LOWE D G. Distinctive image features from scale invariant keypoints[ J]. International Journal of Computer Vision, 2004,60 (2) :91-110.
  • 10SIVIC J, ZISSERMAN A. Video Google:A text retrieval approach to object matching in videos [ C/OL ] //Proceedings of the Ninth IEEE International Conference on Computer Vision. Nice: IEEE Computer Society, 2003 : 1470-1477. [ 2011-03-02 ]. http: // www. robots, ox. ae. uk/- vgg/publications/papers/sivic03, pdf.

共引文献67

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部