摘要
In this paper,we introduce the notion of an almost Armendariz ring,which is a generalization of an Armendariz ring,and discuss some of its properties.It has been found that every almost Armendariz ring is weak Armendariz but the converse is not true.We prove that a ring R is almost Armendariz if and only if R[x]is almost Armendariz.It is also shown th at if R/I is an almost Armendariz ring and I is a semicommutative ideal,then H is an almost Armendariz ring.Moreover,the class of minimal non-commutative almost Armendariz rings is completely determined,up to isomorphism(minimal means having smallest cardinality).