期刊文献+

Copper-thioguanine metallodrug with self-reinforcing circular catalysis for activatable MRI imaging and amplifying specificity of cancer therapy

原文传递
导出
摘要 For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic efficacy is also greatly limited by the specificity of tumor microenvironment for reactive oxygen species(ROS) based cancer therapeutic strategy(e.g., chemodynamic therapy). Herein, we have developed metal-drug coordination nanoplatform that can not only be responsive to tumor microenvironment but also modulate it, so as to achieve efficient treatment of cancer. Excitingly, by employing small molecule drug(6-thioguanine) as ligand copper ions, we achieve a high drug loading rate(60.1%) and 100% of utilization of metal-drug coordination nanoplatform(Cu-TG). Interestingly, Cu-TG possessed high-efficiently horseradish peroxidase-like, glutathione peroxidase-like and catalase-like activity. Under the tumor microenvironment, Cu-TG exhibited the self-reinforcing circular catalysis that is able to amplify the cellular oxidative stress, inducing notable cancer cellular apoptosis. Moreover, Cu-TG could be activated with glutathione(GSH) and facilitated for GSH triggered 6-TG release, higher selective therapeutic effect toward cancer cells, and GSH activated T1 weight-magnetic resonance imaging. Based on the above properties, Cu-TG exhibited magnetic resonance imaging(MRI) guiding, efficient and synergistic combination of chemodynamic and chemotherapy with self-reinforcing therapeutic outcomes in vivo.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第7期924-935,共12页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China (51872088, 21977027, 21804039, 21675043, 21890744)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部