摘要
叶绿素α(chlorophyll-α)是一个关键的水色要素,掌握叶绿素α的含量及变化情况对保护水体及维护生态环境质量具有重要意义。针对国内外相关科研机构生产的海洋叶绿素α融合产品存在精度低、覆盖率低、时间跨度短等问题,收集整理了1998—2017年的MODIS-Aqua、MODIS-Terra、MERIS、SeaWIFS、VIIRS共5个传感器的叶绿素α浓度数据,构建了小波变换与Kalman滤波技术相结合的多源遥感数据融合算法,完成了全球叶绿素α数据的融合,开展了融合产品的均值、方差和信息量的分析,并进行了融合产品与实测数据、欧空局(European Space Agency,ESA)的GSM(Garver-Siegel-Maritorena)产品的对比分析。结果显示,本文的融合产品与实测数据相关性达到60%;与实测值和欧空局的GSM产品对比分析中,融合产品的数据可利用率为60%,而欧空局的GSM产品的数据可利用率为30%左右,融合产品与实测值的相关性为0.7922,而GSM与实测值的相关性为0.3494,均低于本文的融合产品。
Chlorophyll a is a key water color element.Mastering the content and changes of chlorophyll a is of great significance for protecting water bodies and maintaining the quality of ecological environment.This paper collects and analyzes the chlorophyll a concentration data of five sensors including MODIS-Aqua,MODIS-Terra,MERIS,SeaWIFS and VIIRS from 1998 to 2017,and designs and constructs multi-source remote sensing data fusion based on wavelet transform and Kalman filtering.The algorithm completes the data fusion of global chlorophyll a at the same time,completes the analysis of the mean,variance and information of the fusion products,and completes the comparative analysis of fusion product,measured data,and GSM(Garver-Siegel-Maritorena)products.The results show that the correlation between the fusion product and the measured data reaches 60%;compared with the measured value and the ESA GSM products,the data availability of the fusion product is 60%,while the data availability of GSM products is about 30%,the correlation coefficient between the fusion products and the measured values is 0.7922,and the correlation between GSM and measured values is 0.3494,which is lower than the fusion products of this paper.
作者
崔建勇
刘晓东
岳增友
李连伟
CUI Jianyong;LIU Xiaodong;YUE Zengyou;LI Lianwei(College of Geoscience and Technology,China University of Petroleum,Qingdao,Shandong 266580,China;Laboratory for Marine Mineral Resources,National Laboratory for Marine Science and Technology,Qingdao,Shandong 266071,China)
出处
《遥感信息》
CSCD
北大核心
2020年第3期31-36,共6页
Remote Sensing Information
基金
中央高校基本科研业务费专项资金项目(17CX02005A)
中国科学院战略性先导科技专项子课题项目(XDA19060103)。
关键词
多源遥感数据
叶绿素α浓度
小波变换
KALMAN滤波
数据融合
multi-source remote sensing data
chlorophyllαconcentration
wavelet transform
Kalman filtering
data fusion