期刊文献+

基于NSET与信息熵的故障预警等级研究 被引量:7

Research on fault warning level based on NSET and information entropy
下载PDF
导出
摘要 为降低风电机组因机械故障引起的修复成本与风力资源的浪费,提出一种结合非线性状态估计(NSET)与信息熵理论的故障预警算法,使用系统监测数据完成关键设备故障预警,降低设备停机时长。将目标监测参数的前一时刻也作为特征参数之一,并以固定步距挑选历史正常监测数据,组成非线性状态估计算法的记忆矩阵;将改进的信息熵使用范畴进一步限定,并提出递进式故障预警等级,有助于直观了解设备衰退阶段。以风电机组SCADA数据作为数据源,预警发电机驱动端轴承温度高于上限值故障,并探讨不同归一化方法对所提算法的影响,故障算例显示所提算法能够提前预警潜在故障。 In order to reduce the repair costs and waste of wind resources caused by mechanical failure of wind turbines,a fault warning algorithm combining nonlinear state estimation(NSET)and information entropy theory is proposed.The system monitoring data is used to complete the critical equipment fault warning and reduce the equipment downtime.The pre-time of the target monitoring parameter is also taken as one of the characteristic parameters,and the historical normal monitoring data is selected by a fixed step to form a memory matrix of the nonlinear state estimation algorithm;the usage scope of improved information entropy is further limited to complete the fault warning task,and a progressive failure warning level is proposed,which helps to understand the equipment deterioration stage intuitively.Taking the wind turbine SCADA data as the data source,and the fault that the generator drive end bearing temperature is higher than the upper limit value is predicted.The influence of different normalization methods on the proposed algorithm is discussed.The fault study shows that the proposed algorithm can provide early warning aiming at potential failure.
作者 李洋 安平 李志强 刘帅 马良玉 刘卫亮 LI Yang;AN Ping;LI Zhiqiang;LIU Shuai;MA Liangyu;LIU Weiliang(China Suntien Green Energy Corporation Limited,Shijiazhuang 050000,China;Department of Automation,North China Electric Power University,Baoding 071003,China)
出处 《中国测试》 CAS 北大核心 2020年第7期153-158,共6页 China Measurement & Test
关键词 非线性状态估计 信息熵 故障预警 归一化 SCADA数据 nonlinear state estimation information entropy fault warning normalization SCADA data
  • 相关文献

参考文献9

二级参考文献94

  • 1张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 2张星辉,康建设,高存明,曹端超,滕红智.基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J].振动与冲击,2013,32(15):20-25. 被引量:14
  • 3朱伟强.福建省沿海风力资源特性分析[J].电力勘测设计,2006,18(1):33-36. 被引量:12
  • 4刘光德,邢作霞,李科,姚兴佳.风力发电机组电动变桨距系统的研究[J].电机与控制应用,2006,33(10):31-34. 被引量:38
  • 5唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 6Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 7Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 8Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 9Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 10Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.

共引文献250

同被引文献84

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部