期刊文献+

氧化铁石墨烯纳米材料的制备及其电化学性能研究

The Preparation and Electrochemical Performances of Nanomaterials Based on Iron Oxide and Graphene
下载PDF
导出
摘要 以普鲁士蓝类化学物铁氰化铁/氧化石墨烯为前驱体,通过加热分解制备得到氧化铁/石墨烯复合材料。铁氰化铁是立方体结构,在加热分解过程中,氧化反应和分解反应同时进行,实现立方体结构的保持。氧化石墨烯一方面提供给立方体结构的支撑;另一方面,表面的含氧基团提供更充分的氧化环境,在此同时氧化石墨烯被还原为石墨烯提高了导电性。得到的氧化铁/石墨烯复合材料具备以下几点特征:(1)氧化铁具备立方体机构适应电子和离子的快速传导;(2)石墨烯提高了氧化铁/石墨烯复合材料的导电性。石墨烯的存在分散了氧化铁离子,增加了更多的反应活性位点。 The iron oxide/graphene composite was prepared by using Prussian blue chemical iron ferricyanide/graphene oxide as a precursor and thermal decomposition.Iron ferricyanide has a cubic structure.During the thermal decomposition process,the oxidation reaction and the decomposition reaction proceed simultaneously to achieve the maintenance of the cubic structure.On the one hand,graphene oxide provides support for the cubic structure;on the other hand,the oxygen-containing groups on the surface provide a more sufficient oxidation environment,and at the same time,the graphene oxide is reduced to graphene to improve the conductivity.The obtained iron oxide/graphene composite has the following characteristics:(1)the iron oxide has a cubic mechanism to adapt to the rapid conduction of electrons and ions;(2)graphene improves the conductivity of the iron oxide/graphene composite.The presence of graphene disperses iron oxide ions and adds more reactive sites.
作者 周威 吴中 李霆虎 方佩景 潘艳 Zhou Wei;Wu Zhong;Li Tinghu;Fang Peijing;Pan Yan(Materials and Chemistry Engineering College,Bengbu University,Bengbu 233030,China)
出处 《山东化工》 CAS 2020年第13期1-3,共3页 Shandong Chemical Industry
基金 大学生创新训练项目《氧化铁石墨烯纳米材料的制备及其电化学性能研究》(项目编号201811305049) 蚌埠学院质量工程教育教学研究项目(2018JYXML20) 2019蚌埠学院省级质量工程项目(2019jyxm1160)。
关键词 普鲁士蓝类 氧化铁 石墨烯 Prussian blue iron oxide graphene
  • 相关文献

参考文献2

二级参考文献28

  • 1Simon P, Gogotsi Y. Materials for electrochemical capaci- tors[J]. Nature Materials, 2008, 7(11): 845-854.
  • 2Wang G P, Zhang L, Zhang J J. A review of electrode ma- terials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41 (2): 797-828.
  • 3Zhang L L, Zhao X S. Carbon-based materials as superca- pacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520-2531.
  • 4Kim J Y, Kim K H, Yoon S B, et al. In situ chemical syn- thesis of ruthenium oxide/reduced graphene oxide nano- composites for electrochemical capacitor applications [J]. Nanoscale, 2013, 5(15): 6804-6811.
  • 5Shearer C J, Cherevan A, Eder D. Application and future challenges of functional nanocarbon hybrids[J]. Advanced Materials, 2014, 26(15): 2295-2318.
  • 6Nishihara H, Kyotani T. Templated nanocarbons for energy storage advanced materials[J]. Advanced Materials, 2012, 24(33): 4473-4498.
  • 7Yu G H, Xie X, Pan L J, et al. Hybrid nanostructured ma- terials for high-performance electrochemical capacitors[J]. Nano Energy, 2013, 2(2): 213-234.
  • 8Augustyn V, Simon P, Duma B. Pseudocapaeitive oxide materials for high-rate electrochemical energy storage [J]. Energy Environment Science, 2014, 7(5): 1597-1614.
  • 9Wu Z, Huang X L, Wang Z L, et al. Electrostatic induced stretch growth of homogeneous beta-Ni(OH): on graphene with enhanced high-rate cycling for supercapacitors [J]. Scientific Reports, 2014, 4: No. 3669.
  • 10Naoi K, Naoi W, Aoyagi S, et al. New generation "nanohybrid supercapacitor" [J]. Accounts of Chemical Research, 46(5): 1075-1083.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部