摘要
设图G=(V, E)是具有n(n≥3)个顶点、m条边的简单连通图,图G的度序列为{d1,d2,...,dn},定义图G的增强型Zagreb指数(记作AZI)为:AZI=AZI(G)=∑ij∈E(didj/di=dj-2)^3.利用有关不等式的性质,讨论了单圈图的增强型Zagreb指数,得到了该类图的增强型Zagreb指数的几个精确下界.
Let G=(V, E) be a simple connected graph with n(n≥3) vertices and m edges, with vertex degree sequence {d1,d2,...,dn}. The augmented Zagreb index of graphs G is defined as AZI,AZI=AZI(G)=∑ij∈E(didj/di=dj-2)^3. Using the properties of several inequalities, the AZI of unicyclic graphs is investigated, and some new sharp lower bounds for AZI are obtained.
作者
周后卿
ZHOU Houqing(College of Science,Shaoyang University,Shaoyang,Hunan 422000,China)
出处
《湖南城市学院学报(自然科学版)》
CAS
2020年第4期47-50,共4页
Journal of Hunan City University:Natural Science
基金
邵阳学院教学改革研究项目(17JG19)
邵阳学院校级精品资源共享开放课程建设项目([2015]25号)。