期刊文献+

SDN环境下不同机器学习算法的网络流量分类分析

Network traffic classification analysis of different machine learning algorithms in SDN environment
下载PDF
导出
摘要 为对比分析软件定义网络(SDN)环境下不同机器学习算法的网络流量分类效果,对Moore数据集进行了平衡处理,在机器学习平台RapidMiner上对K-近邻(KNN)、随机森林(RF)、支持向量机(SVM)和梯度提升决策树(GBDT)4种经典机器学习算法选取不同的分类特征进行分类实验.实验结果表明,较其他3种算法,GBDT算法可以在较短的时间内获得更好的分类效果. In order to compare and analyze the network traffic classification effect of different machine learning algorithms in the software defined network(SDN)environment,the Moore dataset was balanced,and four classic machine learning algorithms including KNN,random forest(RF),support vector machine(SVM)and gradient lifting decision tree(GBDT)were supported on the machine learning platform RapidMiner to select different classification features for classification experiments.Experimental results showed that compared with the other three algorithms,the GBDT algorithm could obtain better classification results in a shorter time.
作者 王宣立 张安琳 黄道颖 董帅 刘江豪 WANG Xuanli;ZHANG Anlin;HUANG Daoying;DONG Shuai;LIU Jianghao(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China;Engineering Training Center,Zhengzhou University of Light Industry,Zhengzhou 450001,China)
出处 《轻工学报》 CAS 2020年第4期96-102,共7页 Journal of Light Industry
基金 河南省重点科技攻关项目(132102210418)。
关键词 软件定义网络 网络流量分类 机器学习 梯度提升决策树 Moore数据集 softward defined network(SDN) network traffic classification machine learning gradient boosting decision tree Moore dataset
  • 相关文献

参考文献5

二级参考文献38

  • 1林天峰.基于最大熵原理的网络流量预测综合模型[J].微电子学与计算机,2006,23(8):147-149. 被引量:9
  • 2王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21
  • 3COFFMAN K G, ODLYZKO A M. Growth of the internet optical fiber telecommunications [ C ]//Systems and Impairment, 2002 : 17-56.
  • 4DUDA R O, HART P E, STORK D G. Pattern classification[ M]. 2th ed. New York: John Wiley & Sons,2001.
  • 5GUYON I, ELISSEEF A. An introduction to variable and feature selection [ J ].Journal of Machine Learning Research, 2003,3 : 1157-1182.
  • 6YUAN Rui-xi, LI Zhu, GUAN Xiao-hong, et al. An SVM-based machine learning method for accurate internet traffic classification[ J]. Information Systems Frontiers, 2010,12 : 149-156.
  • 7Karagiannis T,Papagiannaki D,Faloutsos M.BLINC:Multilevel Traffic Classification in the Dark[C].ACM SIGCOMM,Philadelphia,PA,USA,August 2005
  • 8Plissonneau L,Costeux J L,Brown P.Analysis of Peer-to-Peer Traffic on ADSL[J].Passive and Active Network Measurement,2005,3431:69-82
  • 9Gerber A,Houle J,Nguyen H,et al.P2P The Gorilla in the Cable[C].National Cable & Telecommunications Association,National Show,Chicago,IL,June 2003
  • 10Saroiu S,Gummadi K P,Dunn R.J,et al.An Analysis of Internet Content Delivery Systems[C].In:Proceedings of the 5th Symposium on Operating Systems Design and Implementation,2002

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部