摘要
为对比分析软件定义网络(SDN)环境下不同机器学习算法的网络流量分类效果,对Moore数据集进行了平衡处理,在机器学习平台RapidMiner上对K-近邻(KNN)、随机森林(RF)、支持向量机(SVM)和梯度提升决策树(GBDT)4种经典机器学习算法选取不同的分类特征进行分类实验.实验结果表明,较其他3种算法,GBDT算法可以在较短的时间内获得更好的分类效果.
In order to compare and analyze the network traffic classification effect of different machine learning algorithms in the software defined network(SDN)environment,the Moore dataset was balanced,and four classic machine learning algorithms including KNN,random forest(RF),support vector machine(SVM)and gradient lifting decision tree(GBDT)were supported on the machine learning platform RapidMiner to select different classification features for classification experiments.Experimental results showed that compared with the other three algorithms,the GBDT algorithm could obtain better classification results in a shorter time.
作者
王宣立
张安琳
黄道颖
董帅
刘江豪
WANG Xuanli;ZHANG Anlin;HUANG Daoying;DONG Shuai;LIU Jianghao(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China;Engineering Training Center,Zhengzhou University of Light Industry,Zhengzhou 450001,China)
出处
《轻工学报》
CAS
2020年第4期96-102,共7页
Journal of Light Industry
基金
河南省重点科技攻关项目(132102210418)。
关键词
软件定义网络
网络流量分类
机器学习
梯度提升决策树
Moore数据集
softward defined network(SDN)
network traffic classification
machine learning
gradient boosting decision tree
Moore dataset